M		NTH CONSULTANTS, LTD. INFRASTRUCTURE ENGINEERING & ENVIRONMENTAL SERVICES				LETTER OF TRANSMITTAL				
	4 1 6	2990 W. Grand Blvd., Detroit, Michigan 48202 41780 Six Mile Road, Suite 200, Northville, Michi 1430 Monroe Ave., Suite 180, Grand Rapids, Mic 608 S. Washington, Lansing, Michigan 48933 8001 Sweet Valley Drive, Unit 15, Valley View, O			an 49505 • (616) • • (517) •			6300 6270 6900	 Fax: (313) 237-3909 Fax: (248) 324-5179 Fax: (616) 451-6271 Fax: (517) 485-8323 Fax: (216) 344-4040 	
To: Ms. Judy Visscher Environmental Regulatory S Holland Board of Public Wo 625 Hastings Avenue Holland, Michigan 49423				IST			Proj. T Pro	NO: DJ. NO: 18 Annual	January 31, 2018 73-160017-04 Report	
	We A	RE SENDING YOU		ATTACHED		Under Separ	ate C	OVER (VIA) THE FOLLOWING:	
		Reports		Prints		SAMPLES				
		Copy of Letter		PLANS						
	COPIES	No.		Date				DESCRIP	TION	
	1	-		/30/2018	2018 ANN	UAL GROUNDWATE		ORT FOR JAM	MES DEYOUNG POWER PLANT	
		Fransmitted As Checki Dur Use			ED AS NO			SUBMIT	COPIES FOR DISTRIBUTION	
		QUESTED				ORRECTIONS		RETURN		
		EVIEW AND COMMENT		DISAPPR					EASE TO BIDDERS	
		PPROVAL								
REMA	ARKS:									
	REMARKS: The analytical data results for radium are still pending. Once this data is received, we will update and revise this Annual Report.									
Сору	′ То:					By:	A	"E	ME	

MARY L. SIEGAN, P.E., PROJECT ENGINEER

CCR Surface Impoundment System James DeYoung Power Plant–Holland, Michigan Holland Board of Public Works Holland, Michigan

TABLE OF CONTENTS

1.0	INTE	RODUCTION	1
2.0	PUR	POSE AND OBJECTIVES	1
3.0	STAT	TUS OF THE GROUNDWATER MONITORING PROGRAM	2
4.0	ACT	IONS COMPLETED	3
	4.1	Development of Sampling and Analysis Plan	3
	4.2	Update to Groundwater Monitoring System	3
	4.3	Groundwater Sample Collection	4
	4.4	Groundwater Sample Analysis and Data Evaluation	6
5.0	PRO	BLEMS ENCOUNTERED	8
6.0	ACT	IONS TO RESOLVE THE PROBLEM	8
7.0	KEY	ACTIVITIES FOR THE UPCOMING YEAR	8
8.0	REC	ORDKEEPING, NOTIFICATION, AND POSTING TO THE INTERNET	8

APPENDICES

FIGURES Figure 1 – Site Location Plan Figure 2 – Monitoring Well Location Map Figure 3 – Groundwater Flow Map	APPENDIX A
WELL INSTALLATION LOGS	APPENDIX B
GROUNDWATER SAMPLING DATA	APPENDIX C

1.0 INTRODUCTION

Holland Board of Public Works (BPW) owns and operates the James DeYoung (JDY) power plant located in Holland, Michigan, on the eastern end of Lake Macatawa. JDY was initially built in 1939 with a generating capacity of 15 megawatts (MW). Between 1953 and 1968, three new boilers were added. From the late 1970's to the early 2000's, the plant consisted of three coalfired boilers capable of producing up to 62.5 MW. On May 20, 2016, BPW discontinued the use of Unit 3; and on June 1, 2017, BPW officially shutdown and retired all generation units at JDY. When Units 3-5 were operating, bottom ash from these boilers was sluiced to the first of three surface impoundments located to the south of the plant, as shown on Figure 1 (Appendix A). These surface impoundments became subject to 40 CFR Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments upon promulgation on April 17, 2015.

2.0 PURPOSE AND OBJECTIVES

Groundwater monitoring and corrective action requirements for existing CCR units are contained in 40 CFR §257.90 through §257.98. 40 CFR Part §257.90 (e) establishes the requirement to prepare an initial annual groundwater monitoring and corrective action report. Consistent with this requirement, this report:

- documents the status of the groundwater monitoring and corrective action program for the CCR unit,
- summarizes actions completed,
- describes problems encountered,
- discusses actions to resolve the problems, and
- describes key activities for the upcoming year.

3.0 STATUS OF THE GROUNDWATER MONITORING PROGRAM

A limited hydrogeological investigation work plan was developed for the site in 2009 that established a groundwater detection monitoring program to address the requirements of Michigan Administrative Code R 323.2237(4) of Michigan's Natural Resources and Environmental Protection Act, 1994 Public Act 451, as amended (Act 451). The work plan pre-dated the final federal CCR rules and had the purpose of satisfying a request by Michigan Department of Environmental Quality to determine whether the presence of bottom ash lagoons (CCR units) may have affected groundwater quality in the surrounding area. The results of this investigation were inconclusive and additional investigative activities were merited.

In 2011, BPW completed subsequent investigation activities at the Site, including the installation of additional monitoring wells, collection of groundwater elevation data, and collection of groundwater samples for the analysis of a subset of metals on a quarterly basis, for a period of three years. The results of the subsequent investigation identified that certain metals were present in the groundwater above the U.S. EPA's Safe Drinking Water Act's maximum contaminant level (MCL) established in 40 CFR §141.62, and concluded that the groundwater quality in the surrounding area may have been affected by the historical use of the CCR units.

Based on the groundwater sampling along with anticipated retirement of the plant combined with the CCR Rule requirements, BPW decided to close the CCR units through removal of CCR and decontamination of the CCR units, in accordance with 40 CFR §257.102; and initiate an assessment of corrective measures, in accordance with 40 CFR §257.96. Final closure of the CCR units is currently being completed in substantial conformance with 40 CFR §257.101 and 40 CFR §257.103, and the written closure plan prepared by NTH Consultants, Ltd., (NTH) dated October 17, 2016. BPW initiated removal of CCR material from the CCR units in June 2017. Two of the existing downgradient monitoring wells were removed during closure of the CCR units. Additionally, based on previous investigation findings, an upgradient monitoring well used during the 2011 study may not have been installed at a location that provided a true background determination for the area around JDY, and was also removed during closure of the CCR units.

4.0 ACTIONS COMPLETED

4.1 Development of Sampling and Analysis Plan

Consistent with the requirements of 40 CFR §257.93, a Groundwater Sampling and Analysis Plan (SAP) was developed in October 2017 to evaluate background and downgradient groundwater quality within the JDY plant property (Site), and confirm compliance with the groundwater monitoring and corrective action requirements.

As discussed previously, BPW conducted groundwater monitoring prior to the effective date of the CCR rules and elected to proceed with CCR removal and clean closure at the site. The SAP was developed to collect necessary information to confirm clean closure.

4.2 Update to Groundwater Monitoring System

To comply with the requirements of 40 CFR §257.93, NTH designed an updated groundwater monitoring system that is representative of groundwater potentially affected by the CCR units. West Michigan Drilling installed three monitoring wells on November 27, 2017, with oversight by NTH Consultants, Ltd. (NTH) personnel, using a CME 550 ATV drill rig. The wells were installed using 4.25-inch hollow-stem augers to the following depths and corresponding elevations:

Well	Depth (feet below ground surface)	Screen Tip Elevation (ft)
MW-1	14	571.21
MW-2	13	569.54
MW-3	15	566.98

Split spoon samplers were used to collect and classify soil layers in the field based on visual observation. The wells were constructed of two-inch diameter polyvinyl chloride casings and well screens. The well screens were 5-feet long with 0.01-inch slot thickness.

All of the monitoring wells were finished with an above ground metal protective casing and concrete pad. Well construction details, including casing and screen material, diameter, length of well casing, length and position of slotted casing, thickness, position and composition of surface

seal, sanitary seal, and sand pack, etc. is provided on the well installation logs, which are included in Appendix B. The logs also provide well survey information, including top of casing elevation, ground surface elevation, and well screen tip elevation.

A review of information regarding the hydrogeologic conditions of the site available at the time the SAP was developed, indicates that groundwater generally flows east-to-west across the site and discharges to the Macatawa River/Lake Macatawa. Based on this information, existing piezometer PZ-1 is located hydraulically upgradient of the former CCR bottom ash lagoons. PZ-1 was previously identified and sampled as monitoring well MW-7. Groundwater samples from this well represent background groundwater quality that has not been affected by the CCR units. Therefore, PZ-1 was redeveloped and used as an upgradient monitoring well. Figure 2 provides the location of the monitoring wells.

The downgradient monitoring wells labeled as MW-1, MW-2, and MW-3 on Figure 2, were installed at locations that represent the quality of groundwater passing the waste boundary of the former CCR units. Groundwater monitoring wells are screened at elevations between 567 and 576 ft in the upper portion of the unconfined uppermost water-bearing zone.

Based on data obtained from the monitoring wells during subsequent sampling events, hydrogeologic conditions will be re-evaluated to confirm groundwater flow direction and to ensure the effectiveness of the monitoring well system.

4.3 Groundwater Sample Collection

On January 10, 2018, representatives from NTH Consultants, Ltd. (NTH) collected the first of what will initially be quarterly groundwater samples collected for assessment monitoring from the groundwater monitoring system at the Site. The samples were submitted to the analytical laboratory for analysis of constituents listed in Appendix III and IV of 40 CFR §257.95.

Groundwater level data was collected from each monitoring well prior to sample collection. Upon arrival at the site, each monitoring well was opened, and allowed to equilibrate with ambient air pressures, prior to measuring the depths to water. Groundwater level measurements were taken to the nearest 0.01 foot from the entire monitoring well network prior to sampling.

The wells were gauged on the same day to provide an interpretative groundwater flow map and to minimize temporal bias of measured groundwater elevation changes for the monitoring well network.

Depth to water was measured from established and surveyed top of casing reference points. Groundwater levels, well conditions, and pertinent observations were recorded on a groundwatersampling log. Appendix C includes copies of the sampling logs. The water level data obtained has been used to develop a groundwater contour map (Groundwater Flow Map – Figure 3), which presents the site's groundwater flow direction.

Sampling personnel collected groundwater samples from the monitoring wells using low-flow (minimal drawdown) groundwater sampling procedures (US EPA, 1996, rev. 2010). Tubing connected to a peristaltic pump was installed to a depth representing the middle of the saturated screen interval. The polyethylene tubing discharge line from the peristaltic pump was connected to a flow-cell and multi-meter to collect water quality indicator parameters during well purging to determine water quality stabilization.

The pump was operated at a rates less than 0.25 gallons per minute to ensure low volatilization and low well disturbance. Water quality indicator parameters and depth to water were recorded at 3 to 5 minute intervals during the purging process and recorded on the groundwater sampling log. Purging and sampling proceeded at a low pumping rate such that the water column in the well was not lowered more than 0.3 feet (4 inches) below the initial static depth to water measurement. The wells were sampled when three consecutive water quality measurements for pH, temperature, and conductivity met stabilization criteria. We note that stabilization criteria could not be met for turbidity in any of the monitoring wells. Prior to the next sampling event these wells will be redeveloped, which may allow the turbidity measurements to stabilize during future sampling events. Likewise, piezometer PZ-1 could not be stabilized due to excessive drawdown; therefore, three well volumes were removed using the peristaltic pump, prior to sample collection.

Samples were collected immediately following stabilization of three of the four field parameters or at PZ-1, after three well volumes were removed. Groundwater samples were collected into laboratory provided sample containers required for the specified analyses. The groundwater samples were collected from the discharge tubing upstream of the water quality meter flow cell.

Care was taken to allow for a non-turbulent filling of laboratory containers. Samples were not filtered in the field to provide a measure of total recoverable metals that will include both the dissolved and particulate fractions of metals in natural waters, consistent with 40 CFR 257.93 (h)(2)(i).

The samples were labelled, stored, and transported to the laboratory under proper chain-ofcustody. Following collection, samples were immediately labelled, logged on the chain-ofcustody, and placed in a cooler with ice prior to delivery to the laboratory with a signed Chain-of-Custody. The chain-of-custody provides documentation of actual sample storage and transport, and contains the dates and times of collection, laboratory receipt, and acknowledgment of analyses to be completed.

Quality assurance/quality control (QA/QC) samples were collected to ensure sample containers are free of analytes of interest, assess the variability of the sampling and laboratory methods, and monitor the effectiveness of decontamination protocols. One field duplicate, one matrix spike, one matrix spike duplicate, one field blank, and one equipment blank were collected for QA/QC purposes.

4.4 Groundwater Sample Analysis and Data Evaluation

Groundwater samples were submitted to ALS Environmental Laboratory, in Holland, Michigan, for the analyses specified in Appendix III and IV to Part 257. The laboratory results, corresponding analytical methods, and practical quantitation limits for each constituent are provided in the analytical report included in Appendix C. Note that the results for Radium 226 and 228 are not yet available from the analytical laboratory. We will amend this report to include the analytical results for Radium 226 and 228, once available. We also note that for some of the constituents analyzed the laboratory's reporting limit are higher than the limits stated in the SAP. Therefore, the laboratory reported concentration at or above the method detection limits, which are significantly lower than the reporting limits.

The results of the quarterly groundwater sampling events will be compared to applicable groundwater standards for determination of clean closure. The groundwater protection standards for each constituent in Appendix IV will be established in accordance with 40 CFR §257.95(h). For constituents for which MCLs have been established under 40 CFR §141.62 and 40 CFR

§141.66, the groundwater protection standard will be the MCL for that constituent. Where MCLs have not been established for the Appendix III constituents, the groundwater protection standard will be the statistically developed background concentration for that constituent in accordance with 40 CFR §257.91, or as noted in the preamble to the rule "in excess of Agency-recommended limits or factors." It should be noted that Michigan's groundwater cleanup criteria developed according to Part 201 of Act 451 will be considered by BPW when evaluating potential "Agency-recommended limits or factors." For those constituents where the statistically developed background level is higher than the MCL, the groundwater protection standard will be the statistically developed background concentration.

As discussed in the facility's SAP and in accordance with 40 CFR §257.93, the data collected from the background monitoring well will be used to calculate background concentrations for each constituent. If appropriate and supported by the data distribution, fewer samples may be utilized for the statistically calculated background concentrations. Background concentrations for each constituent will be calculated using an appropriate statistical method for each background monitoring well, selected based on the distribution of the data in accordance with 40 CFR §257.93, once an appropriate number of data has been collected.

For the current sampling event, we completed a preliminary evaluation of the data by comparing the results to the current MCL, as summarized on Table 1. A review of the results indicate that, in general, most of the Appendix IV constituents are below the current MCL with the exception of arsenic, which was reported above the MCL of 0.01 mg/L in upgradient piezometer PZ-1 (0.045 mg/L), and in downgradient monitoring well MW-1 (0.023 mg/L). We note that groundwater in upgradient piezometer PZ-1, which represents background groundwater quality that has not been affected by CCR units, has higher concentration of arsenic are higher than the MCL. Note also, that for a few other constituents with no established MCLs, the concentrations in upgradient well PZ-1 are higher than the downgradient monitoring wells. As discussed previously, where background levels are higher than MCL, or for constituents without established MCLs, we will statistically develop groundwater protection standards in accordance with 40 CFR §257.91.

5.0 PROBLEMS ENCOUNTERED

As discussed previously, piezometer PZ-1 was purged using a volumetric procedure (removal of three well volumes) due to excessive drawdown. Additionally, stabilization criteria for turbidity could not be achieved in any of the monitoring wells. No additional problems were encountered with the implementation of the groundwater-monitoring program at the facility.

6.0 ACTIONS TO RESOLVE THE PROBLEM

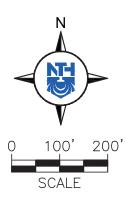
Monitoring well PZ-1 will be redeveloped using the surge and purge method to remove excess suspended solids present in the well prior to the next sampling event. If redevelopment is not effective in allowing for the use of low-flow technique, sample collection will proceed when three of the four stabilization criteria are met, and/or volumetric procedures utilized.

7.0 KEY ACTIVITIES FOR THE UPCOMING YEAR

During the initial assessment monitoring period, the facility will continue to collect quarterly groundwater samples from the existing groundwater monitoring well network. Consistent with the requirements of the SAP, samples will be collected in April, July, and October of 2018, and January of 2019. The results of these sampling events will be provided in the update to the annual groundwater report by January 31, 2019.

8.0 RECORDKEEPING, NOTIFICATION, AND POSTING TO THE INTERNET


Consistent with the requirements of 40 CFR §257.105 (h), this groundwater monitoring and corrective action report, will be placed in the Site's operating record by January 31, 2018. In accordance with 40 CFR §257.106 (h), BPW will notify the State Director that this report has been developed, and that this information has been placed in the operating record and on the owner or operator's publicly accessible internet site, in accordance with 40 CFR §257.107 (h).



1. Figures

NTH PROJECT No.: 62-160017 DESIGNED BY: SLG	CAD FILE NAME: 160017–JDY PLOT DATE: 9/28/2016		tants, Ltd. SITE LOCATION PLAN	FIGURE:
DRAWN BY: SLG	DRAWING SCALE: 1" = 200'	Infrastructure Engine and Environmental		
CHECKED BY: DRL	INCEPTION DATE: 9/7/2016		HOLLAND, MI	-

MONITORING WELL LOCATION

EXISTING PIEZOMETER (UPGRADIENT MONITORING WELL)

NOTE: LOCATIONS AND DIMENSIONS ARE APPROXIMATE. NOT A LEGAL SURVEY.

	NIH CONSULTANTS, LTd.	Infrastructure Engineering and Environmental Services				
cad file name: 160017-MWLM	PLOT DATE: 1/23/2018	DRAWING SCALE:	1" = 200'	INCEPTION DATE: 10/13/2017		
NTH PROJECT No.: 73-160017	DESIGNED BY: KWO	DRAWN BY:	CRD	CHECKED BY: KWO		
	MIN PR 73- DESIGNE DESIGNE			HOLLAND, MICHIGAN		
FIG	URE:)			

j:\2016\73\160017\reports\holland\160017-gwfm.dwg Plotted: 1/31/2018 9:39 AM by cdaniot

NOTE: LO APPROXIM

0 100' 200' SCALE	NTH Consultants, Ltd.	Infrastructure Engineering and Environmental Services
ND	cad file name: 160017-GWFM Plot date: 1/25/2018	DRAWING SCALE: $1^{"} = 200^{\circ}$ INCEPTION DATE: 10/13/2017
MONITORING WELL LOCATION EXISTING PIEZOMETER (UPGRADIENT MONITORING WELL)	NTH PROJECT No.: 73-160017 Designed By: KWO	drawn by: CRD checked by: KWO
<section-header></section-header>	GROUNDWATER FLOW MAP JANUARY 10, 2018	JAMES DEYOUNG POWER PLANT HOLLAND, MICHIGAN
DCATIONS AND DIMENSIONS ARE MATE. NOT A LEGAL SURVEY.	FIGURE	3

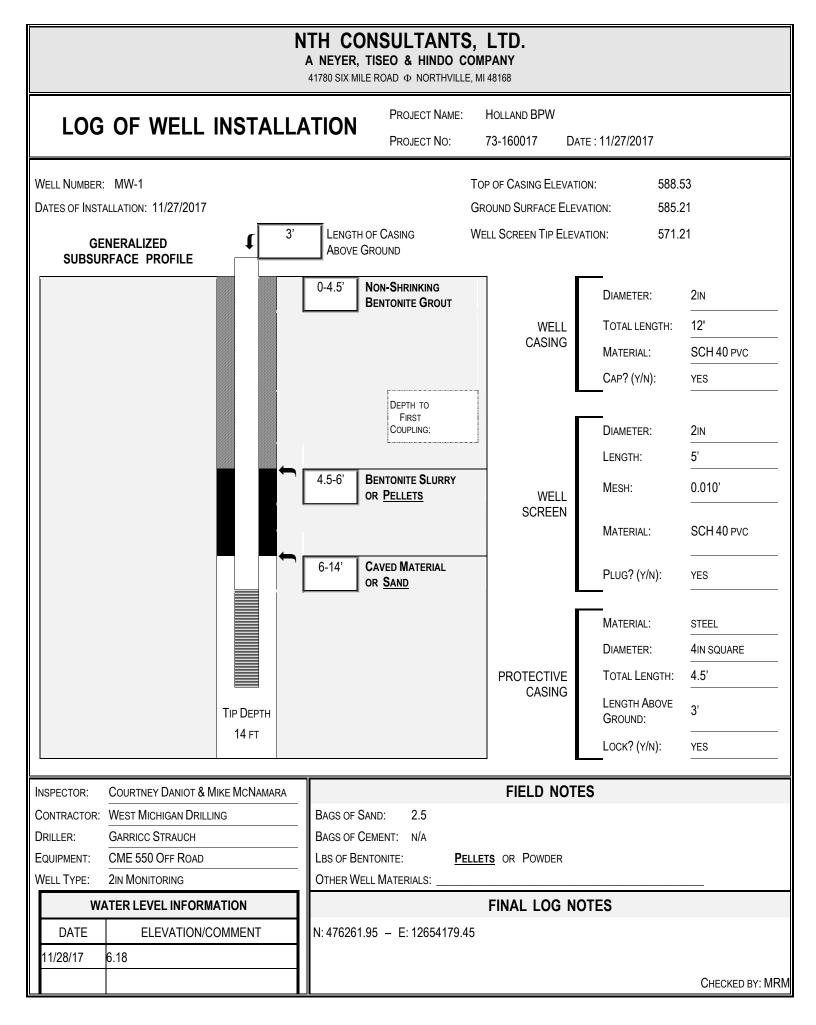
APPENDIX

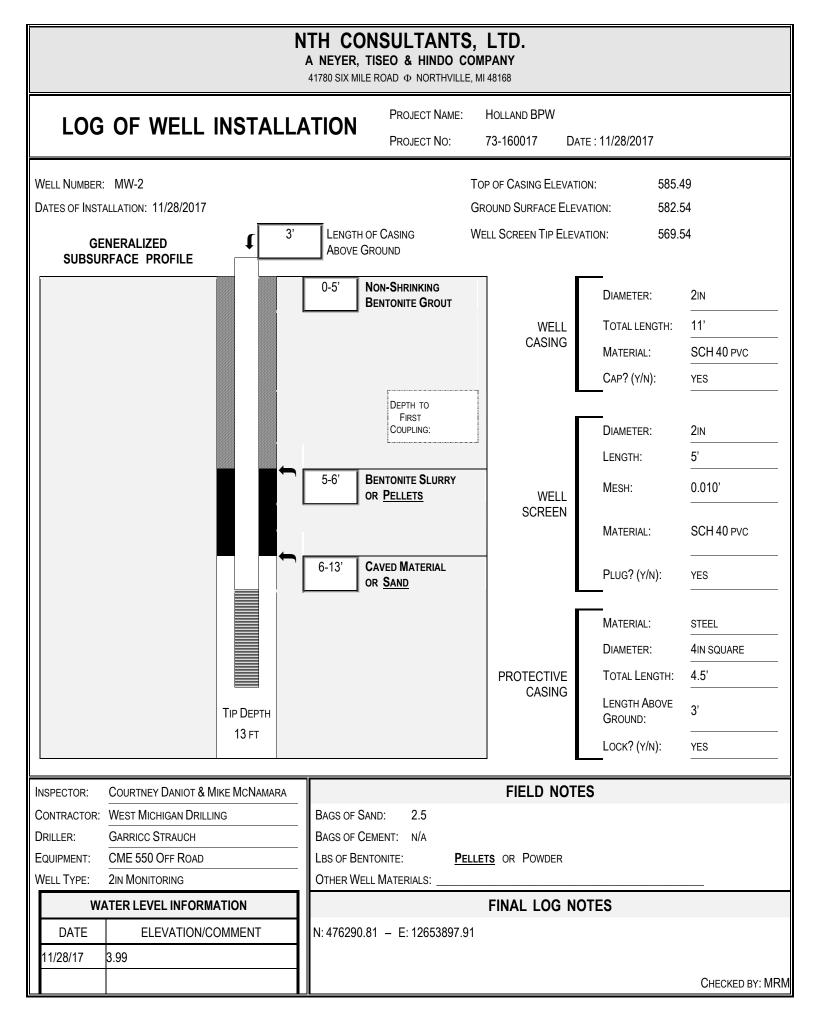
1. Well Installation Logs

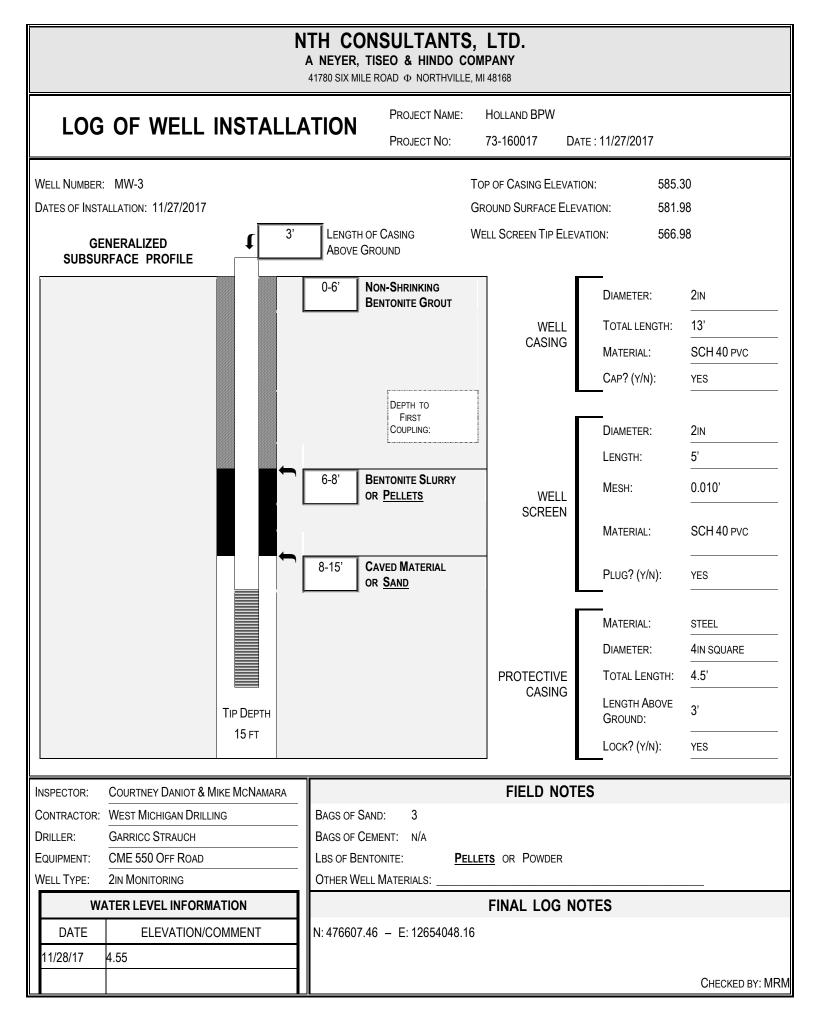
HOLLAND BOARD OF PUBLIC WORKS - JAMES DeYOUNG POWER PLANT TABLE 1 SUMMARY OF LABORATORY ANALYTICAL RESULTS ANNUAL GROUNDWATER REPORT

PARAMETER			Upgradient Well		Groundwater Protection Standard			
		Units	PZ-1⁺	MW-1	MW-1 ⁽¹⁾	MW-2	MW-3	Maximum Contaminant
			1/10/18	1/10/18	1/10/18	1/10/18	1/10/18	Level ^[2]
	Antimony	mg/L	0.0025	0.00022	0.00019	ND	ND	0.006
	Arsenic	mg/L	0.045	0.023	0.022	0.0018	ND	0.01
	Barium	mg/L	0.045	0.34	0.33	0.2	0.034	2
	Beryllium	mg/L	ND	ND	ND	ND	0.00016	0.004
257	Cadmium	mg/L	0.00015	ND	ND	ND	ND	0.005
APPENDIX IV TO CFR PART 257	Chromium	mg/L	0.0067	ND	ND	0.00088	ND	0.1
CFR	Cobalt	mg/L	0.0009	0.00042	0.00039	0.00035	0.00048	
IV TO	Fluoride*	mg/L	1.4	ND	ND	ND	ND	4
XIQN	Lead mg/		0.044	ND	ND	ND	ND	0.015
APPE	Lithium	mg/L	0.0034	0.14	0.13	0.0094	ND	
	Mercury	mg/L	0.0001	0.000052	0.000055	0.00003	0.00003	0.002
	Molybdenum	mg/L	0.12	0.0021	0.0022	0.00037	0.00036	
	Selenium	mg/L	0.0019	ND	ND	ND	ND	0.05
	Thallium	mg/L	ND	ND	ND	ND	ND	0.002
	Boron	mg/L	0.23	1.1	1.1	0.69	0.79	
RT 257	Calcium	mg/L	38	140	130	81	320	
FR PAF	Chloride	mg/L	91	280	300	56	200	250 ^[3]
APPENDIX III TO CFR PART	Fluoride*	mg/L	1.4	ND	ND	ND	ND	4
II XIQN	рН	s.u.	8.35	6.84	6.89	7.08	6.4	6.5-8.5
APPE	Sulfate	mg/L	18	62	57	ND	1200	250 ^[3]
	Total Dissolved Solids	mg/L	1200	1100	980	1300	2300	500 ^[3]

1) Duplicate Sample


2) Maximum Contaminant Level (MCL) promugated by the USEPA pursuant to the provisions of Section 1412 of the Safe Drinking Water Act (40 CFR F


3) Secondary drinking water standards established for aesthetic purposes


4) $^{\rm +}$ - PZ-1 was previously identified and sampled with the MW-7 identifier.

ND = parameter not detected at or above laboratory method detection limit

O:\Active PROJ\73-160017_Holland BPW Ash Impoundment Closure\04\730\002-GW summary table002-GW summary table

Client:	NTH Consultants, Ltd.
Project:	Holland Board of Public Works (73-160017-04)
Sample ID:	MW-3
Collection Date:	1/10/2018 01:50 PM

Work Order: 1801438 Lab ID: 1801438-01 Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		Met	nod: SW7470A		Prep: SW	7470 / 1/24/18	Analyst: RSH
Mercury	U		0.000030	0.00020	mg/L	1	1/24/2018 15:45
METALS BY ICP-MS		Met	nod: SW6020A		Prep: SW	3005A / 1/16/18	Analyst: JF
Antimony	U		0.00017	0.0050	mg/L	1	1/18/2018 20:31
Arsenic	U		0.00087	0.0050	mg/L	1	1/18/2018 20:31
Barium	0.034		0.0022	0.0050	mg/L	1	1/19/2018 14:14
Beryllium	0.00016	J	0.00012	0.0020	mg/L	1	1/18/2018 20:31
Boron	0.79		0.0018	0.020	mg/L	1	1/18/2018 20:31
Cadmium	U		0.000050	0.0020	mg/L	1	1/18/2018 20:31
Calcium	320		0.86	5.0	mg/L	10	1/19/2018 14:19
Chromium	U		0.00065	0.0050	mg/L	1	1/18/2018 20:31
Cobalt	0.00048	J	0.00014	0.0050	mg/L	1	1/18/2018 20:31
Lead	U		0.00033	0.0050	mg/L	1	1/18/2018 20:31
Lithium	U		0.037	1.0	mg/L	100	1/22/2018 13:11
Molybdenum	0.00036	J	0.00031	0.0050	mg/L	1	1/18/2018 20:31
Selenium	U		0.00090	0.0050	mg/L	1	1/18/2018 20:31
Thallium	U		0.00016	0.0050	mg/L	1	1/18/2018 20:31
ANIONS BY ION CHROMATOGRAPHY		Met	nod: E300.0				Analyst: EE
Chloride	200	J	56	1,000	mg/L	100	1/12/2018 13:39
Fluoride	U		9.3	10	mg/L	10	1/12/2018 13:20
Sulfate	1,200		220	1,000	mg/L	100	1/12/2018 13:39
PH (LABORATORY)		Met	nod: A4500-H E	3-11			Analyst: ED
pH (laboratory)	6.40		0.10	0.100	s.u.	1	1/12/2018 14:20
TOTAL DISSOLVED SOLIDS		Met	nod: A2540 C- 1	1	Prep: FIL	TER / 1/17/18	Analyst: MT
Total Dissolved Solids	2,300		12	20	mg/L	1	1/17/2018 13:13

RELIMINARY

Client:	NTH Consultants, Ltd.
Project:	Holland Board of Public Works (73-160017-04)
Sample ID:	MW-2
Collection Date:	1/10/2018 03:20 PM

Work Order: 1801438 Lab ID: 1801438-02 Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		Met	hod: SW7470A		Prep: SW	7470 / 1/24/18	Analyst: RSH
Mercury	U		0.000030	0.00020	mg/L	1	1/24/2018 15:53
METALS BY ICP-MS		Met	hod: SW6020A		Prep: SW	3005A / 1/16/18	Analyst: JF
Antimony	U		0.00017	0.0050	mg/L	1	1/18/2018 20:36
Arsenic	0.0018	J	0.00087	0.0050	mg/L	1	1/18/2018 20:36
Barium	0.20		0.0022	0.0050	mg/L	1	1/18/2018 20:36
Beryllium	U		0.00012	0.0020	mg/L	1	1/18/2018 20:36
Boron	0.69		0.0018	0.020	mg/L	1	1/18/2018 20:36
Cadmium	U		0.000050	0.0020	mg/L	1	1/18/2018 20:36
Calcium	81		0.086	0.50	mg/L	1	1/18/2018 20:36
Chromium	0.00088	J	0.00065	0.0050	mg/L	1	1/18/2018 20:36
Cobalt	0.00035	J	0.00014	0.0050	mg/L	1	1/18/2018 20:36
Lead	U		0.00033	0.0050	mg/L	1	1/18/2018 20:36
Lithium	0.0094	J	0.0037	0.10	mg/L	10	1/22/2018 13:16
Molybdenum	0.00037	J	0.00031	0.0050	mg/L	1	1/18/2018 20:36
Selenium	U		0.00090	0.0050	mg/L	1	1/18/2018 20:36
Thallium	U		0.00016	0.0050	mg/L	1	1/18/2018 20:36
ANIONS BY ION CHROMATOGRAPHY		Met	hod: E300.0				Analyst: EE
Chloride	56		2.8	50	mg/L	5	1/12/2018 14:56
Fluoride	U		4.6	5.0	mg/L	5	1/12/2018 13:58
Sulfate	U		11	50	mg/L	5	1/12/2018 13:58
PH (LABORATORY)		Met	hod: A4500-H E	3-11			Analyst: ED
pH (laboratory)	7.08		0.10	0.100	s.u.	1	1/12/2018 14:20
TOTAL DISSOLVED SOLIDS		Met	hod: A2540 C-1	1	Prep: FIL	TER / 1/17/18	Analyst: MT
Total Dissolved Solids	1,300		12	20	mg/L	1	1/17/2018 13:13

Client:	NTH Consultants, Ltd.
Project:	Holland Board of Public Works (73-160017-04)
Sample ID:	Equipment Blank
Collection Date:	1/10/2018 03:30 PM

Work Order: 1801438 Lab ID: 1801438-03 Matrix: WATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		Met	hod: SW7470A		Prep: SW	/7470 / 1/24/18	Analyst: RSH
Mercury	U		0.000030	0.00020	mg/L	1	1/24/2018 15:56
METALS BY ICP-MS		Met	hod: SW6020A		Prep: SW	/3005A / 1/16/18	Analyst: JF
Antimony	U		0.00017	0.0050	mg/L	1	1/18/2018 20:38
Arsenic	U		0.00087	0.0050	mg/L	1	1/18/2018 20:38
Barium	U		0.0022	0.0050	mg/L	1	1/19/2018 14:26
Beryllium	U		0.00012	0.0020	mg/L	1	1/18/2018 20:38
Boron	0.0089	J	0.0018	0.020	mg/L	1	1/18/2018 20:38
Cadmium	0.00023	J	0.000050	0.0020	mg/L	1	1/18/2018 20:38
Calcium	0.10	J	0.086	0.50	mg/L	1	1/18/2018 20:38
Chromium	U		0.00065	0.0050	mg/L	1	1/18/2018 20:38
Cobalt	U		0.00014	0.0050	mg/L	1	1/18/2018 20:38
Lead	U		0.00033	0.0050	mg/L	1	1/18/2018 20:38
Lithium	U		0.00037	0.010	mg/L	1	1/19/2018 14:26
Molybdenum	U		0.00031	0.0050	mg/L	1	1/18/2018 20:38
Selenium	U		0.00090	0.0050	mg/L	1	1/18/2018 20:38
Thallium	U		0.00016	0.0050	mg/L	1	1/18/2018 20:38
ANIONS BY ION CHROMATOGRAPHY		Met	hod: E300.0				Analyst: EE
Chloride	U		0.56	10	mg/L	1	1/12/2018 15:15
Fluoride	U		0.93	1.0	mg/L	1	1/12/2018 15:15
Sulfate	U		2.2	10	mg/L	1	1/12/2018 15:15
PH (LABORATORY)	Method: A4500-H E		3-11			Analyst: ED	
pH (laboratory)	7.29		0.10	0.100	s.u.	1	1/12/2018 14:20
TOTAL DISSOLVED SOLIDS		Met	hod: A2540 C-1	I1 Prep: FILTER / 1/17/18			Analyst: MT
Total Dissolved Solids	U		6.1	10	mg/L	1	1/17/2018 13:13

Client:	NTH Consultants, Ltd.
Project:	Holland Board of Public Works (73-160017-04)
Sample ID:	Field Blank
Collection Date:	1/10/2018 03:40 PM

Work Order: 1801438 Lab ID: 1801438-04 Matrix: WATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		Met	hod: SW7470A		Prep: SW	/7470 / 1/24/18	Analyst: RSH
Mercury	U		0.000030	0.00020	mg/L	1	1/24/2018 15:58
METALS BY ICP-MS		Met	hod: SW6020A		Prep: SV	/3005A / 1/16/18	Analyst: JF
Antimony	U		0.00017	0.0050	mg/L	1	1/18/2018 20:39
Arsenic	U		0.00087	0.0050	mg/L	1	1/18/2018 20:39
Barium	U		0.0022	0.0050	mg/L	1	1/19/2018 14:27
Beryllium	U		0.00012	0.0020	mg/L	1	1/18/2018 20:39
Boron	U		0.0018	0.020	mg/L	1	1/18/2018 20:39
Cadmium	0.00025	J	0.000050	0.0020	mg/L	1	1/18/2018 20:39
Calcium	0.10	J	0.086	0.50	mg/L	1	1/18/2018 20:39
Chromium	U		0.00065	0.0050	mg/L	1	1/18/2018 20:39
Cobalt	U		0.00014	0.0050	mg/L	1	1/18/2018 20:39
Lead	U		0.00033	0.0050	mg/L	1	1/18/2018 20:39
Lithium	U		0.00037	0.010	mg/L	1	1/19/2018 14:27
Molybdenum	U		0.00031	0.0050	mg/L	1	1/18/2018 20:39
Selenium	U		0.00090	0.0050	mg/L	1	1/18/2018 20:39
Thallium	U		0.00016	0.0050	mg/L	1	1/18/2018 20:39
ANIONS BY ION CHROMATOGRAPHY		Met	hod: E300.0				Analyst: EE
Chloride	U		0.56	10	mg/L	1	1/12/2018 15:34
Fluoride	U		0.93	1.0	mg/L	1	1/12/2018 15:34
Sulfate	U		2.2	10	mg/L	1	1/12/2018 15:34
PH (LABORATORY)	Method: A4500-H B-		8-11			Analyst: ED	
pH (laboratory)	6.84		0.10	0.100	s.u.	1	1/12/2018 14:20
TOTAL DISSOLVED SOLIDS		Met	hod: A2540 C-1	Prep: FILTER / 1/17/18			Analyst: MT
Total Dissolved Solids	U		6.1	10	mg/L	1	1/17/2018 13:13

RELIMINARY

Client:	NTH Consultants, Ltd.
Project:	Holland Board of Public Works (73-160017-04)
Sample ID:	MW-1
Collection Date:	1/10/2018 04:25 PM

Work Order: 1801438 Lab ID: 1801438-05 Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		Met	thod: SW7470A		Prep: SW	7470 / 1/24/18	Analyst: RSH
Mercury	0.000052	J	0.000030	0.00020	mg/L	1	1/24/2018 16:01
METALS BY ICP-MS		Met	hod: SW6020A		Prep: SW	3005A / 1/16/18	Analyst: JF
Antimony	0.00022	J	0.00017	0.0050	mg/L	1	1/18/2018 20:45
Arsenic	0.023		0.00087	0.0050	mg/L	1	1/18/2018 20:45
Barium	0.34		0.0022	0.0050	mg/L	1	1/18/2018 20:45
Beryllium	U		0.00012	0.0020	mg/L	1	1/18/2018 20:45
Boron	1.1		0.018	0.20	mg/L	10	1/22/2018 13:17
Cadmium	U		0.000050	0.0020	mg/L	1	1/18/2018 20:45
Calcium	140		0.086	0.50	mg/L	1	1/18/2018 20:45
Chromium	U		0.00065	0.0050	mg/L	1	1/18/2018 20:45
Cobalt	0.00042	J	0.00014	0.0050	mg/L	1	1/18/2018 20:45
Lead	U		0.00033	0.0050	mg/L	1	1/18/2018 20:45
Lithium	0.14		0.0037	0.10	mg/L	10	1/22/2018 13:17
Molybdenum	0.0021	J	0.00031	0.0050	mg/L	1	1/18/2018 20:45
Selenium	U		0.00090	0.0050	mg/L	1	1/18/2018 20:45
Thallium	U		0.00016	0.0050	mg/L	1	1/18/2018 20:45
ANIONS BY ION CHROMATOGRAPHY		Met	thod: E300.0				Analyst: EE
Chloride	280		14	250	mg/L	25	1/15/2018 12:26
Fluoride	U		0.93	1.0	mg/L	1	1/15/2018 12:07
Sulfate	62	J	54	250	mg/L	25	1/15/2018 12:26
PH (LABORATORY)		Met	thod: A4500-H E	3-11			Analyst: ED
pH (laboratory)	6.84		0.10	0.100	s.u.	1	1/12/2018 14:20
TOTAL DISSOLVED SOLIDS		Met	hod: A2540 C-1	1 Prep: FILTER / 1/17/18			Analyst: MT
Total Dissolved Solids	1,100		12	20	mg/L	1	1/17/2018 13:13

Client:	NTH Consultants, Ltd.
Project:	Holland Board of Public Works (73-160017-04)
Sample ID:	PZ-1
Collection Date:	1/10/2018 04:50 PM

Work Order: 1801438 Lab ID: 1801438-06 Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		Met	hod: SW7470A		Prep: SW	7470 / 1/24/18	Analyst: RSH
Mercury	0.00010	J	0.000030	0.00020	mg/L	1	1/24/2018 16:03
METALS BY ICP-MS		Met	hod: SW6020A		Prep: SW	3005A / 1/16/18	Analyst: JF
Antimony	0.0025	J	0.00017	0.0050	mg/L	1	1/18/2018 20:47
Arsenic	0.045		0.00087	0.0050	mg/L	1	1/18/2018 20:47
Barium	0.045		0.0022	0.0050	mg/L	1	1/19/2018 15:20
Beryllium	U		0.00012	0.0020	mg/L	1	1/18/2018 20:47
Boron	0.23		0.0018	0.020	mg/L	1	1/19/2018 15:20
Cadmium	0.00015	J	0.000050	0.0020	mg/L	1	1/18/2018 20:47
Calcium	38		0.086	0.50	mg/L	1	1/18/2018 20:47
Chromium	0.0067		0.00065	0.0050	mg/L	1	1/18/2018 20:47
Cobalt	0.00090	J	0.00014	0.0050	mg/L	1	1/18/2018 20:47
Lead	0.044		0.00033	0.0050	mg/L	1	1/18/2018 20:47
Lithium	0.0034	J	0.00037	0.010	mg/L	1	1/19/2018 15:20
Molybdenum	0.12		0.00031	0.0050	mg/L	1	1/18/2018 20:47
Selenium	0.0019	J	0.00090	0.0050	mg/L	1	1/18/2018 20:47
Thallium	U		0.00016	0.0050	mg/L	1	1/18/2018 20:47
ANIONS BY ION CHROMATOGRAPHY		Met	hod: E300.0				Analyst: EE
Chloride	91	J	5.6	100	mg/L	10	1/15/2018 13:04
Fluoride	1.4		0.93	1.0	mg/L	1	1/15/2018 12:45
Sulfate	18		2.2	10	mg/L	1	1/15/2018 12:45
PH (LABORATORY)		Met	hod: A4500-H E	3-11			Analyst: ED
pH (laboratory)	8.35		0.10	0.100	s.u.	1	1/12/2018 14:20
TOTAL DISSOLVED SOLIDS		Met	hod: A2540 C-1	11 Prep: FILTER / 1/17/18		TER / 1/17/18	Analyst: MT
Total Dissolved Solids	1,200		12	20	mg/L	1	1/17/2018 13:13

Client:NTH Consultants, Ltd.Project:Holland Board of Public Works (73-160017-04)Sample ID:Field DuplicateCollection Date:1/10/2018

Work Order: 1801438 Lab ID: 1801438-07 Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		Met	hod: SW7470A		Prep: SW	7470 / 1/24/18	Analyst: RSH
Mercury	0.000055	J	0.000030	0.00020	mg/L	1	1/24/2018 16:14
METALS BY ICP-MS		Met	hod: SW6020A		Prep: SW	3005A / 1/16/18	Analyst: JF
Antimony	0.00019	J	0.00017	0.0050	mg/L	1	1/18/2018 20:49
Arsenic	0.022		0.00087	0.0050	mg/L	1	1/18/2018 20:49
Barium	0.33		0.0022	0.0050	mg/L	1	1/18/2018 20:49
Beryllium	U		0.00012	0.0020	mg/L	1	1/18/2018 20:49
Boron	1.1		0.0018	0.020	mg/L	1	1/19/2018 15:21
Cadmium	U		0.000050	0.0020	mg/L	1	1/18/2018 20:49
Calcium	130		0.086	0.50	mg/L	1	1/18/2018 20:49
Chromium	U		0.00065	0.0050	mg/L	1	1/18/2018 20:49
Cobalt	0.00039	J	0.00014	0.0050	mg/L	1	1/18/2018 20:49
Lead	U		0.00033	0.0050	mg/L	1	1/18/2018 20:49
Lithium	0.13		0.00037	0.010	mg/L	1	1/19/2018 15:21
Molybdenum	0.0022	J	0.00031	0.0050	mg/L	1	1/18/2018 20:49
Selenium	U		0.00090	0.0050	mg/L	1	1/18/2018 20:49
Thallium	U		0.00016	0.0050	mg/L	1	1/18/2018 20:49
ANIONS BY ION CHROMATOGRAPHY		Met	hod: E300.0				Analyst: EE
Chloride	300		14	250	mg/L	25	1/15/2018 13:43
Fluoride	U		0.93	1.0	mg/L	1	1/15/2018 13:23
Sulfate	57	J	54	250	mg/L	25	1/15/2018 13:43
PH (LABORATORY)		Met	hod: A4500-H E	8-11			Analyst: ED
pH (laboratory)	6.89		0.10	0.100	s.u.	1	1/12/2018 14:20
TOTAL DISSOLVED SOLIDS		Met	hod: A2540 C-1	1	Prep: FIL	FER / 1/17/18	Analyst: MT
Total Dissolved Solids	980		12	20	mg/L	1	1/17/2018 13:13

Note: See Qualifiers page for a list of qualifiers and their definitions.

RELIMINARY

APPENDIX

1. Groundwater Sampling Data

GENERAL IN	FORMATION
Project Name: JDY PP HOLLAND BPW	Date: 01-10-2013
Project #: 73-160017-04	Field Personnel: P. HEROJ7
Site Location: HOLLAND MI	Well Const.: SCH 40 PVC
Well ID: MW-1	Casing Diameter: 2.0"
Sample ID: MW-1	Screened Interval: 9.0-14.0 Bas
	(ft. from TOC) $(12.5' - 17.6')$

•	PURGING DATA		
Time: 10.50 Start: 10:50	Finish: 12:50		
Purging Volume	Casing Diameter (in)	Casing Vol. Gal./Ft.	3 Casing Vol. Gal./Ft.
Depth to Water (ft. from TOC) = 6.6	1.5	0.10	0.30
Total Well Depth (ft. from TOC) = 16.93	2	0.16	0.48
Height of Water in Well (ft.) = 10.33	3	0.36	1.08
One Well Volume (gallons) = 1.65	4	0.63	1.89
Gallons Purged: ≈ 5.0 (4. 91)	Purging Method	d: PERISTALTIL	
Well Volumes Purged:	Purging Rate (g	al./min.) 0.25	
Was Well Purged Dry? Yes ~ No~			

FIELD MONITORING PARAMETERS								
Accum. Volume	- Dy GAL	1.25 GAL 4:05 PM	2-5 CAL	3.75 ch	5.0 CAL 4:20 PM	FINAL		
Purged (gal)	4:00 pm	4:05 PM	UP:00 PM	Will PM	4:00 PM	SAMPLE 412		
pH (STU)	6.83	6.81	6.82	6.93	6.34	6.83		
Temperature (C)	6.9	6.8	6.9	6.9	6.3	6.8		
Conductivity (umhos)	1899	1906	18 94	1906	1896	1898		
ORP (mv)			gantiple contraction and and and and and and and and and an	-	patron and a second second			
Dissolved Oxygen (ppm)		gant finder applications a		grante -	QUER(MTW) and and a			
Appearance/Color	agenticity and the second	qualification of co	gandigunane.	AND DESCRIPTION OF A CONTRACT OF A CONTRACT.	407902915 pr;			
Odor	and the second second	Sector Control (197 Mar -		Press and a second	ATTON CHANNEL	-		
Turbidity (NTu)	2.3	5.4	7.3	11.4	15.7	16.3		

	SAMPLING DATA	
Time: Start: 4:25 Finish: 4:		
Sample Collection Device: PERISTALT	<i>и</i> с.	
Pump Rate (gpm): 0.2	Packer Used? Yes ~ No ~	
Sample Collection Depth (ft. from TOC): _	≈ 12.0 FT	
Weather Conditions:	Air Temperature (F): 26-38°F	
OVERCAST/RAIN/SNOW	Wind Speed/Direction: O-10	
	Other:	0

GENERAL INFORMATION		
Project Name: JDY PP HOLLAND BPW	Date: 01-10-2019	
Project #: 73-160017-04	Field Personnel: P. HEROUT	
Site Location: HOLLAND, MI	Well Const.: SCH 40 PUC	
Well ID: MW-2	Casing Diameter: 2.0"	
Sample ID: MU-Z	Screened Interval: 8.0'-13.0' Ges	
	(ft. from TOC) $(14.0 - 15.0)$	

Time: Start: 2:30	PURGING DATA Finish: 3:15		
Purging Volume	Casing Diameter (in)	Casing Vol. Gal./Ft.	3 Casing Vol. Gal./Ft.
Depth to Water (ft. from TOC) = 4.4	1.5	0.10	0.30
Total Well Depth (ft. from TOC) = 16.2	2	0.16	0.48
Height of Water in Well (ft.) = 15.8	3	0.36	1.08
One Well Volume (gallons) = $l \cdot 86$	4	0.63	1.89
Gallons Purged: \$5.70 (5.66)	Purging Metho	d: PERISTALTIC	
Well Volumes Purged: 3	Purging Rate (g	gal./min.) 0-1	3
Was Well Purged Dry? Yes ~ No			

	FIELD	MONITORING	G PARAMETE	RS		
Accum. Volume Purged (gal)	2:30-	0.65	1.3 Z:40	1.95	2.6	FINAL 5.8 SAMPLE
pH (STU)	6.95	6.97	6.97	6.96	6.95	6.98
Temperature (C)	77.6	7.5	7.6	7.7	7.8	8.1
Conductivity (umhos)	2560	2559	2562	2560	2558	2557
ORP (mv)			-	and the second s		
Dissolved Oxygen (ppm)	-		Million and Arrient			
Appearance/Color						
Odor	-		The second and the second seco			
Turbidity (NTu)	50	54	130	180	204	310

	SAMPLING DATA	
Time: Start: 3.20 Finish: 3	25	
Sample Collection Device: PERIST ACTA	٤	
Pump Rate (gpm): ?. ?]	Packer Used? Yes ~ No ~	
Sample Collection Depth (ft. from TOC): _	13 FT	
Weather Conditions:	Air Temperature (F): 26-38 ° /-	
OVERCAST RAIN/SNOW	Wind Speed/Direction: O ~ 1 Om/4 5	
	Other: NA	

GENERAL INFORMATION

Project Name: JDY PP HOLLAND BPW	Date: 01-10-2013
Project #: 73-160017-04	Field Personnel: P. HEROUT
Site Location: HOLLAND, MI	Well Const.: SCH 40 PVC
Well ID: $MW - 3$	Casing Diameter: 2.0 "
Sample ID: MW-3	Screened Interval: 10.0'- 15.0' Bas
	(ft. from TOC) $(13.0^{\circ} - 18.0^{\circ})$

PURGING DATA			
Time: 40 MIN Start: 1.00	Finish: 1,'40		
Purging Volume	Casing Diameter (in)	Casing Vol. Gal./Ft.	3 Casing Vol. Gal./Ft.
Depth to Water (ft. from TOC) = 4.3	1.5	0.10	0.30
Total Well Depth (ft. from TOC) = $ \mathcal{B}, 2'$	2	0.16	0.48
Height of Water in Well (ft.) = 13.4°	3	0.36	1.08
One Well Volume (gallons) = 2.14	4	0.63	1.89
Gallons Purged: ~6.5 (6.43)	Purging Method	1: PERISTALTIC	
Well Volumes Purged: 3	Purging Rate (gal./min.) 0.16		
Was Well Purged Dry? Yes ~ 🔊			

	FIELD	MONITORIN	G PARAMETI	ERS		
Accum. Volume Purged (gal)	1:07	1:12	1:17	1:22	1:27	FINAL SAMPLE
pH (STU)	6.19	6.18	6.17	6.16	6.15	6.14
Temperature (C)	10.5	10.6	10.6	10.9	10.8	10.8
Conductivity (umhos)	3/3/	3130	3130	3133	3/32	3135
ORP (mv)	Busilesses,		-	-		-
Dissolved Oxygen (ppm)		-	-	-	-	
Appearance/Color		-	-		_	
Odor		-	-	-	-	-
Turbidity (NTu)	100	86	70	63	55	48

	SAMPLING DATA	
Time: Start: 1.40 Finish: 1.3	<u> </u>	
Sample Collection Device:		
Pump Rate (gpm): 0, 15	Packer Used? Yes ~ No ~	
Sample Collection Depth (ft. from TOC): _	≈ 15.0°	
Weather Conditions: BUERCAST/RAIN/SNOW	Air Temperature (F): 26-38°F Wind Speed/Direction: 0-10 mPH 5 Other: NA	

GENERAL INFORMATION		
Project Name: JDY P.P. HOLLAND BPW	Date: 01-10-2018	
Project #: 73-160017-04	Field Personnel: P. HERDUT	
Site Location: HOLLANS ME	Well Const.: PVC	
Well ID: 2 - 1	Casing Diameter: 2 ^N	
Sample ID: PZ - I	Screened Interval: B0778M NA	
	(ft. from TOC)	

PURGING DATA				
Time: Start:	Finish:			
Purging Volume	Casing Diameter (in)	Casing Vol. Gal./Ft.	3 Casing Vol. Gal./Ft.	
Depth to Water (ft. from TOC) = 10.3	1.5	0.10	0.30	
Total Well Depth (ft. from TOC) = 13.6	2	0.16	0.48	
Height of Water in Well (ft.) = 3.3	3	0.36	1.08	
One Well Volume (gallons) = 0.528	4	0.63	1.89	
Gallons Purged: 1.6 (1.58) Purging Method: PERISTALTIC				
Well Volumes Purged: <u>J</u> <i>MAV DOWN</i> Was Well Purged Dry? Yes ~ No~) <i>Charles of the second of the </i>				
Was Well Purged Dry? Yes ~ No~ Gueene	PRAN LOW FLOW PRAN PURGE	3 VOL, REZ	URN IN PM.	

FIELD MONITORING PARAMETERS Accum. Volume FINAL O. SGAL 1.Sch Purged (gal) SAMPLE pH (STU) 8.2 8.2 Temperature (C) 5.7 10.2 **Conductivity (umhos)** 1876 1938 ORP (mv) Dissolved Oxygen (ppm) Appearance/Color Odor Turbidity (NTu) 9.7 30.9

	SAMPLING DATA
Time: Start: WWO Finish: W Sample Collection Device: PERISTAL	tic
Pump Rate (gpm): <u><i>Q</i></u> 25 * . Sample Collection Depth (ft. from TOC): _	Packer Used? Yes ~ No ~
Weather Conditions: OVERCAST/RAIN/SNOW	Air Temperature (F): 26-38 · F Wind Speed/Direction: 0 - 10 A Pit 5 Other: NA