2020 Annual Groundwater Report

CCR Surface Impoundment System James DeYoung Power Plant Holland Board of Public Works

Holland, Michigan

January 29, 2020

NTH Project No. 73-160017-04

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	PUR	POSE AND OBJECTIVES	1
3.0	STA	TUS OF THE GROUNDWATER MONITORING PROGRAM	2
	3.1	Post-closure Monitoring	3
4.0	ACT	TONS COMPLETED	4
	4.1	Groundwater Sample Collection.	4
	4.2	Groundwater Sample Analysis and Data Evaluation	6
5.0	PRO	BLEMS ENCOUNTERED	7
6.0	ACT	TONS TO RESOLVE THE PROBLEM	8
7.0	KEY	ACTIVITIES FOR THE UPCOMING YEAR	8
8.0	REC	CORDKEEPING, NOTIFICATION, AND POSTING TO THE IN	ΓERNET 8
		APPENDICES	
EIGI	IDEC		A DDENIDIY A
FIGU		re 1 – Site Location Plan	APPENDIX A
	•	re 2 – Monitoring Well Location Map	
	•	re 3A through 3C – Quarterly Groundwater Flow Maps	
TAB		e 1 – Summary of Laboratory Analytical Results	APPENDIX B
GRO	UNDW	VATER SAMPLING DATA	APPENDIX C
	Appe	endices C-1 through C-3	
		Groundwater Analytical Results	
		Groundwater Sampling Collection Logs	

1.0 INTRODUCTION

Holland Board of Public Works (BPW) owns and operated the James DeYoung (JDY) power plant located in Holland, Michigan, on the eastern end of Lake Macatawa that was operated until June 2017. JDY was initially built in 1939 with a generating capacity of 15 megawatts (MW). Between 1953 and 1968, BPW added three new boilers; from the late 1970's to the early 2000's, the plant consisted of three coal-fired boilers capable of producing up to 62.5 MW of electricity. On May 20, 2016, BPW discontinued the use of Unit 3; and on June 1, 2017, BPW officially shutdown and retired all remaining generation units at JDY. When Units 3-5 were operating, bottom ash from these boilers was sluiced to the first of three surface impoundments located to the south of the plant, as shown on Figure 1 (Appendix A). These surface impoundments became subject to 40 CFR Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments upon promulgation on April 17, 2015.

2.0 PURPOSE AND OBJECTIVES

Groundwater monitoring and corrective action requirements for existing CCR units are contained in 40 CFR §257.90 through §257.98. 40 CFR §257.90 (e) establishes the requirement to prepare an annual groundwater monitoring and corrective action report. Consistent with this requirement, this report:

- documents the status of the groundwater monitoring and corrective action program for the CCR unit;
- summarizes actions completed;
- describes problems encountered;
- discusses actions to resolve the problems; and
- describes key activities for the upcoming year.

3.0 STATUS OF THE GROUNDWATER MONITORING PROGRAM

A limited hydrogeological investigation work plan was developed for the site in 2009 that established a groundwater detection monitoring program to address the requirements of Michigan Administrative Code R 323.2237(4) of Michigan's Natural Resources and Environmental Protection Act, 1994 Public Act 451, as amended (Act 451). The work plan pre-dated the final federal CCR rules and had the purpose of satisfying a request by Michigan Department of Environmental Quality (MDEQ), now known as Michigan Department of Environment, Great Lakes, and Energy (EGLE), to determine whether the presence of bottom ash lagoons (CCR units) may have affected groundwater quality in the surrounding area. The results of this investigation were inconclusive and additional investigative activities were merited.

In 2011, BPW completed subsequent investigation activities at the Site, including the installation of additional monitoring wells, collection of groundwater elevation data, and collection of groundwater samples for the analysis of a subset of metals on a quarterly basis and for a period of three years. The results of the subsequent investigation identified that certain metals were present in the groundwater above the U.S. EPA's Safe Drinking Water Act's maximum contaminant level (MCL) established in 40 CFR §141.62 and concluded that the groundwater quality in the surrounding area may have been affected by the historic use of the CCR units.

Based on the findings of this investigation, the anticipated retirement of the plant, and 40 CFR Part 257, Subpart D requirements, BPW decided to close the CCR units through removal of CCR and decontamination of the CCR units, in accordance with 40 CFR §257.102; and initiate an assessment of corrective measures, in accordance with 40 CFR §257.96. BPW initiated removal of CCR material from the CCR units in June 2017. During construction, two of the existing downgradient monitoring wells were removed due to the location of on-site CCR removal activities. Additionally, based on previous investigation findings, an upgradient monitoring well used during the 2011 study may not have been installed at a location that provided a true background determination for the area around JDY, and was also removed during closure of the CCR units. Final closure of the CCR units was completed in May 2018 and site restoration

completed in June 2018 in substantial conformance with 40 CFR §257.101 and 40 CFR §257.103, and the written closure plan prepared by NTH Consultants, Ltd., (NTH) dated October 17, 2016.

3.1 Post-Closure Monitoring

Consistent with the requirements contained in 40 CFR §257.93, a groundwater Sampling and Analysis Plan (SAP) was developed in October 2017 (revised in March 2018) to evaluate background and downgradient groundwater quality within the JDY plant property (Site), and confirm compliance with the groundwater monitoring and corrective action requirements. As discussed previously, BPW conducted groundwater monitoring prior to the effective date of the CCR rules and elected to proceed with CCR removal and clean closure of the CCR units; the SAP was developed to collect necessary information to confirm clean closure.

To comply with the requirements of 40 CFR §257.93, NTH designed an updated groundwater monitoring system that is representative of groundwater potentially affected by the CCR units. A review of information regarding the hydrogeologic conditions of the site available at the time the SAP was developed indicated that groundwater generally flows east-to-west across the site and discharges to the Macatawa River/Lake Macatawa. Based on this information, existing piezometer PZ-1 is located hydraulically upgradient of the former CCR units; note that PZ-1 was previously identified and sampled as monitoring well MW-7. Groundwater samples from this well represent background groundwater quality that has not been affected by the CCR units. Three additional wells, MW-1, MW-2, and MW-3 were installed downgradient of the CCR units on November 27, 2017. Figure 2 provides the location of the monitoring wells in the updated groundwater monitoring system. Water level data obtained from the monitoring wells during the quarterly events were used to develop groundwater contour maps. The quarterly maps are consistent from one sampling event to the next, and confirm groundwater flow direction. Figures 3A, 3B and 3C present groundwater contour maps for the available quarterly sampling events conducted in 2019. Note that a groundwater sampling event was not conducted during the second quarter of 2019 due to excessive precipitation that resulted in flooded conditions at the site.

4.0 ACTIONS COMPLETED

Where possible, NTH conducted groundwater monitoring at the facility on a quarterly basis during the months of January, September, and December 2019, in accordance with the procedures established in the facility's SAP. As stated previously, due to flooding conditions at the site, groundwater samples were not collected during the second quarter of 2019. The monitoring conducted for the remaining three quarters included the collection of static water levels, field measurements of pH, temperature, conductivity, and turbidity, and groundwater samples for analysis of constituents contained in Appendix III and Appendix IV of 40 CFR 257.

4.1 Groundwater Sample Collection

During each of the quarterly sampling events, representatives from NTH collected groundwater samples for assessment monitoring from the groundwater monitoring system at the Site. The samples were submitted to the analytical laboratory for analysis of constituents listed in Appendix III and IV of 40 CFR §257.95.

Groundwater elevation data were collected from each monitoring well prior to sample collection. Upon arrival at the site, each monitoring well was opened, and allowed to equilibrate with ambient air pressures, prior to measuring the depths to water. Groundwater elevation measurements were taken to the nearest 0.01 foot from the entire monitoring well network prior to sampling. The water levels of Lake Macatawa and each well were gauged on the same day to provide an interpretative groundwater flow map and to minimize temporal bias of measured groundwater elevation changes for the monitoring well network.

Depth to water was measured from established and surveyed top of casing reference points. Groundwater levels, well conditions, and pertinent observations were recorded on groundwater-sampling logs, and are included in Appendices C-1 through C-3. The water elevation data obtained was used to develop groundwater contour maps for each sampling event (Groundwater Flow Maps – Figures 3A through 3C), which present the site's groundwater flow direction.

Sampling personnel collected groundwater samples from the monitoring wells using low-flow (minimal drawdown) groundwater sampling procedures (US EPA, 1996, rev. 2010). Tubing connected to a peristaltic pump was installed to a depth representing the middle of the saturated screen interval; the polyethylene tubing discharge line from the peristaltic pump was connected to a flow-cell and multi-meter to collect water quality indicator parameters during well purging to determine water quality stabilization.

Samples were collected immediately following stabilization of three of the four field parameters. Groundwater samples were collected into laboratory provided sample containers required for the specified analyses. The groundwater samples were collected from the discharge tubing upstream of the water quality meter flow cell. Care was taken to allow for non-turbulent filling of laboratory containers. Samples were not filtered in the field to provide a measure of total recoverable metals that will include both the dissolved and particulate fractions of metals in natural waters, consistent with 40 CFR §257.93 (h)(2)(i).

The samples were labeled, stored, and transported to the laboratory under proper chain-of-custody. Following collection, samples were immediately labeled, logged on the chain-of-custody, and placed in a cooler with ice prior to delivery to the laboratory with a signed Chain-of-Custody. The chain-of-custody provides documentation of actual sample storage and transport, and contains the dates and times of collection, laboratory receipt, and acknowledgment of analyses to be completed.

Quality assurance/quality control (QA/QC) samples were collected to ensure sample containers are free of analytes of interest, assess the variability of the sampling and laboratory methods, and monitor the effectiveness of decontamination protocols. One field duplicate, one matrix spike, one matrix spike duplicate, one field blank, and one equipment blank were collected for QA/QC purposes.

4.2 Groundwater Sample Analysis and Data Evaluation

Groundwater samples were submitted to ALS Environmental Laboratory, in Holland, Michigan, for the analyses specified in Appendix III and IV to Part 257. The laboratory results, corresponding analytical methods, and practical quantitation limits (PQL) for each constituent are provided in the corresponding analytical reports for each sampling event, included in Appendix C-1 through C-3.

In general, the laboratory PQLs (reporting limits) are consistent with the reporting limits stated in the March 2018 revised SAP and are below the established MCLs. We note that, due to dilution for high concentrations of non-target analytes, or matrix interference (effervescent matrix), a few parameters in selected monitoring wells had elevated reporting limits, above the PQLs established in the SAP, as shown on the laboratory analytical report included in **Appendix A.** However, the elevated reporting limits, in general, were below the applicable criteria.

Once an appropriate number of background samples have been collected, generally eight events based on the distribution of the dataset, the results of the quarterly groundwater sampling events will be compared to applicable groundwater standards for determination of clean closure. The groundwater protection standards for each constituent in Appendix IV will be established in accordance with 40 CFR §257.95(h). For constituents for which MCLs have been established under 40 CFR §141.62 and 40 CFR §141.66, the groundwater protection standard will be the MCL for that constituent. Where MCLs have not been established for the Appendix III constituents, the groundwater protection standard will be the statistically developed background concentration for that constituent in accordance with 40 CFR §257.91, or as noted in the preamble to the rule "in excess of Agency-recommended limits or factors." It should be noted that Michigan's groundwater cleanup criteria developed according to Part 201 of Act 451 will be considered by BPW when evaluating potential "Agency-recommended limits or factors." For those constituents where the statistically developed background level is higher than the MCL, the groundwater protection standard will be the statistically developed background concentration.

As discussed in the facility's SAP and in accordance with 40 CFR §257.93, the data collected from the background monitoring well will be used to calculate background concentrations for

each constituent. If appropriate and supported by the data distribution, fewer or additional samples may be utilized for the statistically calculated background concentrations. Background concentrations for each constituent will be calculated using an appropriate statistical method for each background monitoring well, selected based on the distribution of the data in accordance with 40 CFR §257.93, once an appropriate number of data has been collected.

For each of the quarterly samples collected in 2019, we completed a preliminary evaluation of the data by comparing the results to the current MCL, as summarized on Table 1. A review of the results indicate that, in general, most of the Appendix IV constituents are below the current MCL with the exception of arsenic, which was reported above the MCL of 0.01 mg/L in upgradient well PZ-1, and in downgradient monitoring well MW-1; and lead, which was reported above the MCL of 0.015 mg/L in upgradient well PZ-1. We note that groundwater in upgradient well PZ-1, which represents background groundwater quality that has not been affected by CCR units, has higher concentration of arsenic than downgradient monitoring well MW-1; this indicates that background levels of arsenic are higher than the MCL. Note also that, for a few other constituents with no established MCLs, the concentrations in upgradient well PZ-1 are generally higher than the downgradient monitoring wells. As discussed previously, where background levels are higher than MCL, or for constituents without established MCLs, we will statistically develop groundwater protection standards in accordance with 40 CFR §257.91, or "Agency-recommended limits of factor"/ Michigan Part 201 criteria.

5.0 PROBLEMS ENCOUNTERED

As discussed previously, flooding at the site caused by excessive precipitation during the second quarter and a significant portion of the third quarter of 2019, precluded the collection of groundwater samples during the second quarter. Consequently, groundwater samples were collected late in the third quarter of 2019 and fourth quarter of 2019 (September and December 2019) and not in July and October 2019 as indicated in the SAP.

6.0 ACTIONS TO RESOLVE THE PROBLEM

The facility will attempt to collect the samples in 2020 as close to the sampling schedule established in the SAP while ensuring that the sampling intervals are appropriate for collecting samples from different groundwater volumes so as to maintain sample independence. Sample independence is a basic assumption in most statistical procedures and it more accurately reflects the true range of natural variability in groundwater.

7.0 KEY ACTIVITIES FOR THE UPCOMING YEAR

During the on-going assessment monitoring period, the facility will continue to collect quarterly groundwater samples from the existing groundwater monitoring well network. To ensure that independent samples are collected from one quarterly event to the next, groundwater samples will be collected as close to the schedule established in the SAP, but significantly apart from the previous sampling events. As such, dependent on weather conditions, samples will be collected in February, May, August, and November of 2020. Note that if appropriate and merited, the facility may opt to install another groundwater monitoring well in the vicinity of the CCR units to better understand groundwater flow and constituent concentrations at the site. The results of the 2020 sampling events will be provided in the update to the annual groundwater report by January 31, 2021.

8.0 RECORDKEEPING, NOTIFICATION, AND POSTING TO THE INTERNET

Consistent with the requirements of 40 CFR §257.105 (h), this groundwater monitoring and corrective action report will be placed in the Site's operating record by January 31, 2020. In accordance with 40 CFR §257.106 (h), BPW will notify the State Director that this report has been developed, and that this information has been placed in the operating record and on the owner or operator's publicly accessible internet site, in accordance with 40 CFR §257.107 (h).

APPENDIX A

FIGURES



NTH PROJECT No.:	CAD FILE NAME:
62-160017	160017-JDY
DESIGNED BY:	PLOT DATE:
SLG	9/28/2016
DRAWN BY:	DRAWING SCALE:
SLG	1" = 200"
CHECKED BY:	INCEPTION DATE:

MH	NTH Consultants, Ltd.
	Infrastructure Engineering and Environmental Services

SITE LOCATION PLAN	
JAMES DEYOUNG POWER PLANT	
HOLLAND, MI	

NTH Consultants, Ltd.
Infrastructure Engineering
and Environmental Services

LEGEND

MW-1 MONITORING WELL LOCATION

EXISTING PIEZOMETER
(UPGRADIENT MONITORING WELL)

MONITORING WELL LOCATION MAP JAMES DEYOUNG POWER PLANT HOLLAND, MICHIGAN

FIGURE:

LEGEND

MW−1 I

MONITORING WELL LOCATION

₽Z-1

PIEZOMETER (UPGRADIENT MONITORING WELL)

[582.50] WATER LEVELS

580— WATER LEVEL CONTOUR

JANUARY 17, 2019 GROUNDWATER LEVELS

JAMES DEYOUNG POWER PLANT

HOLLAND, MICHIGAN

NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

FIGURE:


3A

LAKE [582.29]()

MW-[N/A]

MW-1 [583.04]

MW-2 [582.62]

LEGEND

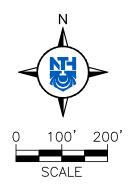
PZ−1 **‡** [583.66]

MONITORING WELL LOCATION

PIEZOMETER (UPGRADIENT MONITORING WELL)

LAKE LEVEL LOCATION

WATER LEVELS


WATER LEVEL CONTOUR

PZ−1 © LAKE [582.50] 580GROUNDWATER LEVELS SEPTEMBER 16, 2019 JAMES DEYOUNG POWER PLANT HOLLAND, MICHIGAN FIGURE:

NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

MW-1 () [582.48]

NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

MONITORING WELL LOCATION

₽Z−1

© LAKE LAKE LEVEL LOCATION

[582.50]

WATER LEVEL CONTOUR 580-

LEGEND

PIEZOMETER (UPGRADIENT MONITORING WELL)

WATER LEVELS

FIGURE:

JAMES DEYOUNG POWER PLANT HOLLAND, MICHIGAN

GROUNDWATER LEVELS DECEMBER 18, 2019

APPENDIX B

TABLE

HOLLAND BOARD OF PUBLIC WORKS - JAMES DEYOUNG POWER PLANT TABLE 1

2019 SUMMARY OF LABORATORY ANALYTICAL RESULTS

PARAMETER		Units	l	Jpgradient W	ell						Downgrad	lient Wells						Groundwater Protection Standard
		Ullius		PZ-1 ⁺		MW-1			MW-2				MW-3			Maximum		
			1/17/19	9/16/19	12/18/19	1/17/19	9/16/19	09/16/19 ¹	12/18/19	1/17/19	1/17/19 ¹	9/16/19	12/18/19	1/17/19	9/16/19	12/18/19	12/18/2019 ¹	Contaminant Level ^[2]
	Antimony	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005	0.006
	Arsenic	mg/L	0.02	0.056	0.032	0.021	0.039	0.038	0.026	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005	0.01
	Barium	mg/L	0.044	0.074	0.062	0.27	0.29	0.28	0.27	0.2	0.21	0.16	0.2	0.035	NA	0.04	0.04	2
257	Beryllium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NA	<0.002	<0.002	0.004
3T 25	Cadmium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NA	<0.002	<0.002	0.005
R PART	Chromium	mg/L	<0.005	<0.005	0.0082	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005	0.1
CFR	Cobalt	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005	
≥	Fluoride	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<2.0	<5.0	NA	<2.0	<2.0	4
APPENDIX IV TO	Lead	mg/L	0.018	0.027	0.018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005	0.015
PEN	Lithium	mg/L	<0.01	<0.01	<0.01	0.12	0.14	0.14	0.12	0.011	0.011	0.012	0.01	0.028	NA	0.03	0.03	
4	Mercury	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	NA	<0.0002	<0.0002	0.002
	Molybdenum	mg/L	0.023	0.021	0.068	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005	
	Selenium	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005	0.05
	Thallium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NA	<0.002	<0.002	0.002
	Radium 226/228 Combined [4]	pCi/L	<0.34 / <0.38	<0.34 / <0.38	<0.55 / <0.82	0.32 / 0.92	0.61 / 2.05	0.78 / 2.21	<0.43 / 0.93	0.35 / <0.74	< 0.42 / 0.09	<0.46 / 1.74	0.64 / 1.05	<0.038 / <0.074	NA	<0.21 / <0.76	<0.45 / <0.76	5
	Boron	mg/L	0.29	0.47	0.38	1.10	1.40	1.50	1.20	0.63	0.66	0.75	0.72	0.79	NA	0.77	0.78	-
257	Calcium	mg/L	38	53	45	110	110	110	110	80	80	47	83	360	NA	360	340	
PART 2	Chloride	mg/L	<100	40	210	240	180	180	200	550	550	560	580	170	NA	150	150	250 ^[3]
R P/	Fluoride	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<2.0	<5.0	NA	<5.0	<5.0	4
TO CFR	pH (lab)	s.u.	8.7	7.77	8.85	7.2	6.94	6.96	7.24	7.2	7.2	6.93	7.24	6.9	NA	6.76	6.76	6.5-8.5
	pH (field)	s.u.	8.42	8.08	8.67	6.99	6.96	6.99	7.1	7.08	7.08	7.15	7.14	6.3	NA	6.66	6.72	6.5-8.5
NDN	Sulfate	mg/L	4.4	28	29	39	39	39	26	<4	<4	<4.0	<4.0	1300	NA	950	970	250 ^[3]
APPENDIX III	Total Dissolved Solids	mg/L	1000	1200	1500	960	1100	990	900	1200	1200	1400	1300	2200	NA	2000	1900	500 ^[3]

¹⁾ Duplicate Sample

²⁾ Maximum Contaminant Level (MCL) promulgated by the USEPA pursuant to the provisions of Section 1412 of the Safe Drinking Water Act (40 CFR Part 141).

³⁾ Secondary drinking water standards established for aesthetic purposes

⁴⁾ Sum of values reported above the minimum detectable concentration (MDC) for radium 226 and radium 228.

^{5) + -} PZ-1 was previously identified and sampled with the MW-7 identifier.

< = parameter not detected at or above laboratory report limit or, in the case of radium 226/228, above the MDC.

NA - Not analyzed. Well inaccessible due to flooding.

APPENDIX C

ANALYTICAL REPORTS & FIELD INFORMATION FORMS

19-Feb-2019

Karen Okonta NTH Consultants, Ltd. 41780 Six Mile Road Northville, MI 48168

Re: Holland Board of Public Works Work Order: 1901899

Dear Karen,

ALS Environmental received 8 samples on 17-Jan-2019 04:30 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 39.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MI: 0022

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🚴

ALS Group, USA

Date: 19-Feb-19

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works

Work Order: 1901899

Work Order Sample Summary

Lab Samp II	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
1901899-01	PZ1	Groundwater		1/17/2019 10:10	1/17/2019 16:30	
1901899-02	MW 2	Groundwater		1/17/2019 12:30	1/17/2019 16:30	
1901899-03	MW 1	Groundwater	•	1/17/2019 13:50	1/17/2019 16:30	
1901899-04	MW 3	Groundwater		1/17/2019 15:10	1/17/2019 16:30	
1901899-06	Field Blank	Groundwater		1/17/2019	1/17/2019 16:30	
1901899-07	Field Duplicate	Groundwater		1/17/2019	1/17/2019 16:30	
1901899-08	Equipment Blank	Groundwater		1/17/2019	1/17/2019 16:30	

Date: 19-Feb-19

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Case Narrative

Work Order: 1901899

Samples for the above noted Work Order were received on 01/17/2019. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Wet Chemistry:

Samples were processed outside of holding time for pH, as the analysis is a field test and holding time is defined as 15 minutes. Results should be considered estimated.

Batch R253692, Method IC_300.0_WW, Samples 1901899-02B and -07B: The reporting limits for Fluoride and Sulfate are elevated due to dilution for high concentrations of non-target analytes.

Batch R253692, Method IC_300.0_WW, Sample 1901899-04B: The reporting limit for Fluoride is elevated due to dilution for high concentrations of non-target analytes.

Radium 226 &228 analysis performed by ALS Fort Collins laboratory.

mg/L

s.u.

Milligrams per Liter Standard Units

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description
as noted	

Date: 19-Feb-19

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 1901899

Sample ID: PZ1 **Lab ID:** 1901899-01

Collection Date: 1/17/2019 10:10 AM Matrix: GROUNDWATER

Date: 19-Feb-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 1/23/19 11:25	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/23/2019 03:04 PM
METALS BY ICP-MS			SW602	20A	Prep: SW3005A 1/21/19 12:46	Analyst: STP
Antimony	ND		0.0050	mg/L	1	1/21/2019 03:01 PM
Arsenic	0.020		0.0050	mg/L	1	1/21/2019 03:01 PM
Barium	0.044		0.0050	mg/L	1	1/21/2019 03:01 PM
Beryllium	ND		0.0020	mg/L	1	1/21/2019 03:01 PM
Boron	0.29		0.020	mg/L	1	1/21/2019 03:01 PM
Cadmium	ND		0.0020	mg/L	1	1/21/2019 03:01 PM
Calcium	35		0.50	mg/L	1	1/21/2019 03:01 PM
Chromium	ND		0.0050	mg/L	1	1/21/2019 03:01 PM
Cobalt	ND		0.0050	mg/L	1	1/21/2019 03:01 PM
Lead	0.018		0.0050	mg/L	1	1/21/2019 03:01 PM
Lithium	ND		0.010	mg/L	1	1/21/2019 03:01 PM
Molybdenum	0.023		0.0050	mg/L	1	1/21/2019 03:01 PM
Selenium	ND		0.0050	mg/L	1	1/21/2019 03:01 PM
Thallium	ND		0.0020	mg/L	1	1/21/2019 03:01 PM
ANIONS BY ION CHROMATOGRAPH	IY		E300.0			Analyst: JDR
Chloride	66		10	mg/L	10	1/22/2019 03:55 PM
Fluoride	ND		1.0	mg/L	1	1/22/2019 03:38 PM
Sulfate	4.4		2.0	mg/L	1	1/22/2019 03:38 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	8.42	Н	0.100	s.u.	1	1/20/2019 01:00 PM
Temperature	21.8	Н	0.100	С	1	1/20/2019 01:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 1/23/19 12:08	Analyst: TRP
Total Dissolved Solids	1,000		50	mg/L	1	1/24/2019 08:39 AM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRAC as not		Analyst: ALS 2/15/2019

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 1901899

Sample ID: MW 2 **Lab ID:** 1901899-02

Collection Date: 1/17/2019 12:30 PM Matrix: GROUNDWATER

Date: 19-Feb-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 1/23/19 11:25	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/23/2019 03:19 PM
METALS BY ICP-MS			SW602	20A	Prep: SW3005A 1/21/19 12:46	Analyst: STP
Antimony	ND		0.0050	mg/L	1	1/21/2019 03:07 PM
Arsenic	ND		0.0050	mg/L	1	1/21/2019 03:07 PM
Barium	0.20		0.0050	mg/L	1	1/21/2019 03:07 PM
Beryllium	ND		0.0020	mg/L	1	1/21/2019 03:07 PM
Boron	0.63		0.20	mg/L	10	1/21/2019 04:24 PM
Cadmium	ND		0.0020	mg/L	1	1/21/2019 03:07 PM
Calcium	80		0.50	mg/L	1	1/21/2019 03:07 PM
Chromium	ND		0.0050	mg/L	1	1/21/2019 03:07 PM
Cobalt	ND		0.0050	mg/L	1	1/21/2019 03:07 PM
Lead	ND		0.0050	mg/L	1	1/21/2019 03:07 PM
Lithium	0.011		0.010	mg/L	1	1/21/2019 03:07 PM
Molybdenum	ND		0.0050	mg/L	1	1/21/2019 03:07 PM
Selenium	ND		0.0050	mg/L	1	1/21/2019 03:07 PM
Thallium	ND		0.0020	mg/L	1	1/21/2019 03:07 PM
ANIONS BY ION CHROMATOGRAPH	ΙΥ		E300.0			Analyst: JDR
Chloride	550		50	mg/L	50	1/22/2019 04:29 PM
Fluoride	ND		2.0	mg/L	2	1/22/2019 04:12 PM
Sulfate	ND		4.0	mg/L	2	1/22/2019 04:12 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	7.08	Н	0.100	s.u.	1	1/19/2019 04:00 PM
Temperature	22.8	Н	0.100	С	1	1/19/2019 04:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 1/23/19 12:08	Analyst: TRP
Total Dissolved Solids	1,200		50	mg/L	1	1/24/2019 08:39 AM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRAC [*] as not		Analyst: ALS 2/15/2019

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works **Work Order:** 1901899

Sample ID: MW 1 **Lab ID:** 1901899-03

Collection Date: 1/17/2019 01:50 PM Matrix: GROUNDWATER

Date: 19-Feb-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 1/23/19 11:25	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/23/2019 03:21 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 1/21/19 12:46	Analyst: STP
Antimony	ND		0.0050	mg/L	1	1/21/2019 03:08 PM
Arsenic	0.021		0.0050	mg/L	1	1/21/2019 03:08 PM
Barium	0.27		0.0050	mg/L	1	1/21/2019 03:08 PM
Beryllium	ND		0.0020	mg/L	1	1/21/2019 03:08 PM
Boron	1.1		0.20	mg/L	10	1/21/2019 04:25 PM
Cadmium	ND		0.0020	mg/L	1	1/21/2019 03:08 PM
Calcium	110		0.50	mg/L	1	1/21/2019 03:08 PM
Chromium	ND		0.0050	mg/L	1	1/21/2019 03:08 PM
Cobalt	ND		0.0050	mg/L	1	1/21/2019 03:08 PM
Lead	ND		0.0050	mg/L	1	1/21/2019 03:08 PM
Lithium	0.12		0.010	mg/L	1	1/21/2019 03:08 PM
Molybdenum	ND		0.0050	mg/L	1	1/21/2019 03:08 PM
Selenium	ND		0.0050	mg/L	1	1/21/2019 03:08 PM
Thallium	ND		0.0020	mg/L	1	1/21/2019 03:08 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	240		40	mg/L	40	1/22/2019 05:21 PM
Fluoride	ND		1.0	mg/L	1	1/22/2019 04:47 PM
Sulfate	39		10	mg/L	5	1/22/2019 05:04 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	6.99	Н	0.100	s.u.	1	1/19/2019 04:00 PM
Temperature	22.8	Н	0.100	С	1	1/19/2019 04:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 1/23/19 12:08	Analyst: TRP
Total Dissolved Solids	960		50	mg/L	1	1/24/2019 08:39 AM
SUBCONTRACTED ANALYSES Subcontracted Analyses	ee attached		SUBC	ONTRACT		Analyst: ALS 2/15/2019

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 1901899

Sample ID: MW 3 **Lab ID:** 1901899-04

Collection Date: 1/17/2019 03:10 PM Matrix: GROUNDWATER

Date: 19-Feb-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 1/23/19 11:25	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/23/2019 03:24 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 1/21/19 12:46	Analyst: STP
Antimony	ND		0.0050	mg/L	1	1/21/2019 03:10 PM
Arsenic	ND		0.0050	mg/L	1	1/21/2019 03:10 PM
Barium	0.035		0.0050	mg/L	1	1/21/2019 03:10 PM
Beryllium	ND		0.0020	mg/L	1	1/21/2019 03:10 PM
Boron	0.79		0.20	mg/L	10	1/21/2019 04:27 PM
Cadmium	ND		0.0020	mg/L	1	1/21/2019 03:10 PM
Calcium	360		5.0	mg/L	10	1/21/2019 04:27 PM
Chromium	ND		0.0050	mg/L	1	1/21/2019 03:10 PM
Cobalt	ND		0.0050	mg/L	1	1/21/2019 03:10 PM
Lead	ND		0.0050	mg/L	1	1/21/2019 03:10 PM
Lithium	0.028		0.010	mg/L	1	1/21/2019 03:10 PM
Molybdenum	ND		0.0050	mg/L	1	1/21/2019 03:10 PM
Selenium	ND		0.0050	mg/L	1	1/21/2019 03:10 PM
Thallium	ND		0.0020	mg/L	1	1/21/2019 03:10 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	170		25	mg/L	25	1/22/2019 05:55 PM
Fluoride	ND		5.0	mg/L	5	1/22/2019 05:38 PM
Sulfate	1,300		200	mg/L	100	1/22/2019 06:12 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	6.30	Н	0.100	s.u.	1	1/19/2019 04:00 PM
Temperature	22.7	Н	0.100	С	1	1/19/2019 04:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 1/23/19 12:08	Analyst: TRP
Total Dissolved Solids	2,200		50	mg/L	1	1/24/2019 08:39 AM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRACT as not		Analyst: ALS 2/15/2019

Client: NTH Consultants, Ltd.

Project:Holland Board of Public WorksWork Order:1901899Sample ID:Field BlankLab ID:1901899-06

Collection Date: 1/17/2019 Matrix: GROUNDWATER

Date: 19-Feb-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	′0A	Prep: SW7470 1/23/19 11:25	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/23/2019 03:29 PM
METALS BY ICP-MS			SW602	20A	Prep: SW3005A 1/21/19 12:46	Analyst: STP
Antimony	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Arsenic	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Barium	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Beryllium	ND		0.0020	mg/L	1	1/21/2019 03:14 PM
Boron	ND		0.020	mg/L	1	1/21/2019 03:14 PM
Cadmium	ND		0.0020	mg/L	1	1/21/2019 03:14 PM
Calcium	ND		0.50	mg/L	1	1/21/2019 03:14 PM
Chromium	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Cobalt	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Lead	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Lithium	ND		0.010	mg/L	1	1/21/2019 03:14 PM
Molybdenum	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Selenium	ND		0.0050	mg/L	1	1/21/2019 03:14 PM
Thallium	ND		0.0020	mg/L	1	1/21/2019 03:14 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0)		Analyst: JDR
Chloride	ND		1.0	mg/L	1	1/22/2019 07:38 PM
Fluoride	ND		1.0	mg/L	1	1/22/2019 07:38 PM
Sulfate	ND		2.0	mg/L	1	1/22/2019 07:38 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	5.95	Н	0.100	s.u.	1	1/19/2019 04:00 PM
Temperature	22.6	Н	0.100	С	1	1/19/2019 04:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 1/23/19 12:08	Analyst: TRP
Total Dissolved Solids	ND		50	mg/L	1	1/24/2019 08:39 AM
SUBCONTRACTED ANALYSES			SUBC	ONTRAC	Т	Analyst: ALS
Subcontracted Analyses Se	ee attached			as no		2/15/2019

Client: NTH Consultants, Ltd.

Project:Holland Board of Public WorksWork Order:1901899Sample ID:Field DuplicateLab ID:1901899-07

Collection Date: 1/17/2019 Matrix: GROUNDWATER

Date: 19-Feb-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 1/23/19 11:25	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/23/2019 03:31 PM
METALS BY ICP-MS			SW602	20A	Prep: SW3005A 1/21/19 12:46	Analyst: STP
Antimony	ND		0.0050	mg/L	1	1/21/2019 03:19 PM
Arsenic	ND		0.0050	mg/L	1	1/21/2019 03:19 PM
Barium	0.20		0.0050	mg/L	1	1/21/2019 03:19 PM
Beryllium	ND		0.0020	mg/L	1	1/21/2019 03:19 PM
Boron	0.66		0.20	mg/L	10	1/21/2019 04:29 PM
Cadmium	ND		0.0020	mg/L	1	1/21/2019 03:19 PM
Calcium	80		0.50	mg/L	1	1/21/2019 03:19 PM
Chromium	ND		0.0050	mg/L	1	1/21/2019 03:19 PM
Cobalt	ND		0.0050	mg/L	1	1/21/2019 03:19 PM
Lead	ND		0.0050	mg/L	1	1/21/2019 03:19 PM
Lithium	0.011		0.010	mg/L	1	1/21/2019 03:19 PM
Molybdenum	ND		0.0050	mg/L	1	1/21/2019 03:19 PM
Selenium	ND		0.0050	mg/L	1	1/21/2019 03:19 PM
Thallium	ND		0.0020	mg/L	1	1/21/2019 03:19 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	550		50	mg/L	50	1/22/2019 08:12 PM
Fluoride	ND		2.0	mg/L	2	1/22/2019 07:55 PM
Sulfate	ND		4.0	mg/L	2	1/22/2019 07:55 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	7.08	Н	0.100	s.u.	1	1/19/2019 04:00 PM
Temperature	22.6	Н	0.100	С	1	1/19/2019 04:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 1/23/19 12:08	Analyst: TRP
Total Dissolved Solids	1,200		50	mg/L	1	1/24/2019 08:39 AM
SUBCONTRACTED ANALYSES			SUBC	ONTRAC	Г	Analyst: ALS
Subcontracted Analyses S	ee attached			as not	ted 1	2/15/2019

Client: NTH Consultants, Ltd.

Project:Holland Board of Public WorksWork Order:1901899Sample ID:Equipment BlankLab ID:1901899-08

Collection Date: 1/17/2019 Matrix: GROUNDWATER

Date: 19-Feb-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 1/23/19 11:25	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/23/2019 03:34 PM
METALS BY ICP-MS			SW602	20A	Prep: SW3005A 1/21/19 12:46	Analyst: STP
Antimony	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Arsenic	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Barium	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Beryllium	ND		0.0020	mg/L	1	1/21/2019 03:20 PM
Boron	ND		0.020	mg/L	1	1/21/2019 03:20 PM
Cadmium	ND		0.0020	mg/L	1	1/21/2019 03:20 PM
Calcium	ND		0.50	mg/L	1	1/21/2019 03:20 PM
Chromium	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Cobalt	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Lead	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Lithium	ND		0.010	mg/L	1	1/21/2019 03:20 PM
Molybdenum	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Selenium	ND		0.0050	mg/L	1	1/21/2019 03:20 PM
Thallium	ND		0.0020	mg/L	1	1/21/2019 03:20 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	ND		1.0	mg/L	1	1/22/2019 08:29 PM
Fluoride	ND		1.0	mg/L	1	1/22/2019 08:29 PM
Sulfate	ND		2.0	mg/L	1	1/22/2019 08:29 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	6.01	Н	0.100	s.u.	1	1/19/2019 04:00 PM
Temperature	22.4	Н	0.100	С	1	1/19/2019 04:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 1/23/19 12:08	Analyst: TRP
Total Dissolved Solids	ND		50	mg/L	1	1/24/2019 08:39 AM
SUBCONTRACTED ANALYSES			SUBC	ONTRAC	Т	Analyst: ALS
Subcontracted Analyses So	ee attached			as no	ted 1	2/15/2019

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

QC BATCH REPORT

Date: 19-Feb-19

Batch ID: 131065	Instrument ID HG4		Method	d: SW74 7	70A					
MBLK	Sample ID: MBLK-131065-1310	65			Units: mg/	L	Analys	sis Date:	1/23/2019 (02:49 PM
Client ID:	Run	ID: HG4_1	90123A		SeqNo: 549 2	2978	Prep Date: 1/2	3/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.000036	0.00020								J
LCS	Sample ID: LCS-131065-131065	5			Units: mg/	L	Analys	sis Date:	1/23/2019 (02:52 PM
Client ID:	Run	ID: HG4_1	90123A		SeqNo: 549 2	2979	Prep Date: 1/2	3/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.001936	0.00020	0.002		0 96.8	80-120	C)		
MS	Sample ID: 1901899-01AMS				Units: mg/	L	Analys	sis Date:	1/23/2019 (03:07 PM
Client ID: PZ1	Run	ID: HG4_1	90123A		SeqNo: 549 2	2985	Prep Date: 1/2	3/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.001644	0.00020	0.002	0.00004	45 80	75-125	C)		
MSD	Sample ID: 1901899-01AMSD				Units: mg/	L	Analys	sis Date:	1/23/2019 (03:17 PM
Client ID: PZ1	Run	ID: HG4_1	90123A		SeqNo: 549 2	2989	Prep Date: 1/2	3/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.001758	0.00020	0.002	0.00004	45 85.6	75-125	0.001644	. 6	.7 20	
The following sam	ples were analyzed in this batch:	19	901899-01A 901899-04A 901899-08A		901899-02A 901899-06A		001899-03A 001899-07A			

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

Batch ID: 130920	Instrument ID ICPMS3		Metho	d: SW602	20A					
MBLK	Sample ID: MBLK-130920-13092	20			Units: mg/	L	Analy	sis Date:	1/21/2019 0	2:58 PM
Client ID:	Run II	D: ICPMS	3_190121A		SeqNo: 548 8	8626	Prep Date: 1/2	21/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	ND	0.0050								
Arsenic	ND	0.0050								
Barium	ND	0.0050								
Beryllium	ND	0.0020								
Boron	0.01289	0.020								J
Cadmium	ND	0.0020								
Calcium	ND	0.50								
Chromium	ND	0.0050								
Cobalt	ND	0.0050								
Lead	ND	0.0050								
Lithium	ND	0.010								
Molybdenum	ND	0.0050								
Selenium	ND	0.0050								
Thallium	ND	0.0050								

LCS	Sample ID: LCS-130920-130920)			L	Jnits: mg/	L	Analy	sis Date:	1/21/2019 0	3:00 PM
Client ID:	Run I	D: ICPMS	3_190121A		Se	qNo: 548 8	3627	Prep Date: 1/2	21/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.0951	0.0050	0.1		0	95.1	80-120	()		
Arsenic	0.09833	0.0050	0.1		0	98.3	80-120	()		
Barium	0.09423	0.0050	0.1		0	94.2	80-120	()		
Beryllium	0.09694	0.0020	0.1		0	96.9	80-120	()		
Boron	0.4619	0.020	0.5		0	92.4	80-120	()		
Cadmium	0.09853	0.0020	0.1		0	98.5	80-120	()		
Calcium	9.658	0.50	10		0	96.6	80-120	()		
Chromium	0.09735	0.0050	0.1		0	97.3	80-120	()		
Cobalt	0.09783	0.0050	0.1		0	97.8	80-120	()		
Lead	0.09725	0.0050	0.1		0	97.3	80-120	()		
Lithium	0.09699	0.010	0.1		0	97	80-120	()		
Molybdenum	0.09772	0.0050	0.1		0	97.7	80-120	()		
Selenium	0.09839	0.0050	0.1		0	98.4	80-120	()		
Thallium	0.09435	0.0050	0.1		0	94.3	80-120	()		

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

Batch ID: 130920 Instrument ID ICPM	Method:	SW6020A
-------------------------------------	---------	---------

MS	Sample ID: 1901899-01AMS				Units: mg/	L	Analy	sis Date:	1/21/2019 0	3:03 PM
Client ID: PZ1	Run I	D: ICPMS	3_190121A	Se	eqNo: 548	8629	Prep Date: 1/2	21/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09949	0.0050	0.1	0.00263	96.9	75-125		0		
Arsenic	0.12	0.0050	0.1	0.02005	99.9	75-125		0		
Barium	0.1391	0.0050	0.1	0.04357	95.5	75-125		0		
Beryllium	0.09882	0.0020	0.1	0.000057	98.8	75-125		0		
Boron	0.7514	0.020	0.5	0.2892	92.5	75-125		0		
Cadmium	0.09439	0.0020	0.1	0.000016	94.4	75-125		0		
Calcium	43.96	0.50	10	34.7	92.7	75-125		0		
Chromium	0.1016	0.0050	0.1	0.004589	97	75-125		0		
Cobalt	0.09576	0.0050	0.1	0.000591	95.2	75-125		0		
Lead	0.1168	0.0050	0.1	0.01784	99	75-125		0		
Lithium	0.1015	0.010	0.1	0.004731	96.7	75-125		0		
Molybdenum	0.1211	0.0050	0.1	0.02252	98.6	75-125		0		
Selenium	0.08144	0.0050	0.1	0.001515	79.9	75-125		0		
Thallium	0.09489	0.0050	0.1	0.000042	94.8	75-125		0		

MS	Sample ID: 1901898-01AMS				Units: mg/	L	Analy	sis Date:	1/21/2019 0	3:03 PM
Client ID:	Run	ID: ICPMS	3_190121A		SeqNo: 548	8653	Prep Date: 1/2	21/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09949	0.0050	0.1	0.0026	3 96.9	75-125	()		
Arsenic	0.12	0.0050	0.1	0.0200	5 99.9	75-125	()		
Barium	0.1391	0.0050	0.1	0.0435	7 95.5	75-125	()		
Beryllium	0.09882	0.0020	0.1	0.00005	7 98.8	75-125	()		
Boron	0.7514	0.020	0.5	0.289	2 92.5	75-125	()		
Cadmium	0.09439	0.0020	0.1	0.00001	94.4	75-125	()		
Calcium	43.96	0.50	10	34.	7 92.7	75-125	()		
Chromium	0.1016	0.0050	0.1	0.004589	9 97	75-125	()		
Cobalt	0.09576	0.0050	0.1	0.00059	1 95.2	75-125	()		
Lead	0.1168	0.0050	0.1	0.0178	4 99	75-125	()		
Lithium	0.1015	0.010	0.1	0.00473	1 96.7	75-125	()		
Molybdenum	0.1211	0.0050	0.1	0.0225	2 98.6	75-125	()		
Selenium	0.08144	0.0050	0.1	0.00151	5 79.9	75-125	()		
Thallium	0.09489	0.0050	0.1	0.000042	2 94.8	75-125	()		

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

Batch ID: 130920	Instrument ID ICPMS3	Method: SW6020A
------------------	----------------------	-----------------

MSD	Sample ID: 1901899-01AMSD				Units: mg/	L	Analysi	s Date: 1/	21/2019 0	3:05 PM
Client ID: PZ1	Run I	D: ICPMS	3_190121A	S	eqNo: 548	8630	Prep Date: 1/21	/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09901	0.0050	0.1	0.00263	96.4	75-125	0.09949	0.487	20	
Arsenic	0.1191	0.0050	0.1	0.02005	99.1	75-125	0.12	0.716	20	
Barium	0.1398	0.0050	0.1	0.04357	96.2	75-125	0.1391	0.48	20	
Beryllium	0.09807	0.0020	0.1	0.000057	98	75-125	0.09882	0.768	20	
Boron	0.748	0.020	0.5	0.2892	91.8	75-125	0.7514	0.46	20	
Cadmium	0.09495	0.0020	0.1	0.000016	94.9	75-125	0.09439	0.588	20	
Calcium	43.98	0.50	10	34.7	92.8	75-125	43.96	0.0345	20	
Chromium	0.1016	0.0050	0.1	0.004589	97.1	75-125	0.1016	0.0846	20	
Cobalt	0.09465	0.0050	0.1	0.000591	94.1	75-125	0.09576	1.17	20	
Lead	0.1172	0.0050	0.1	0.01784	99.3	75-125	0.1168	0.286	20	
Lithium	0.102	0.010	0.1	0.004731	97.3	75-125	0.1015	0.549	20	
Molybdenum	0.1212	0.0050	0.1	0.02252	98.7	75-125	0.1211	0.0974	20	
Selenium	0.08237	0.0050	0.1	0.001515	80.9	75-125	0.08144	1.14	20	
Thallium	0.09485	0.0050	0.1	0.000042	94.8	75-125	0.09489	0.039	20	

MSD	Sample ID: 1901898-01AMSD			l	Units: mg/	L	Analysi	is Date: 1	/21/2019 0	3:05 PM
Client ID:	Run	D: ICPMS	3_190121A	Se	eqNo: 548	8654	Prep Date: 1/21	/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09901	0.0050	0.1	0.00263	96.4	75-125	0.09949	0.487	20	
Arsenic	0.1191	0.0050	0.1	0.02005	99.1	75-125	0.12	0.716	20	
Barium	0.1398	0.0050	0.1	0.04357	96.2	75-125	0.1391	0.48	20	
Beryllium	0.09807	0.0020	0.1	0.000057	98	75-125	0.09882	0.768	20	
Boron	0.748	0.020	0.5	0.2892	91.8	75-125	0.7514	0.46	20	
Cadmium	0.09495	0.0020	0.1	0.000016	94.9	75-125	0.09439	0.588	20	
Calcium	43.98	0.50	10	34.7	92.8	75-125	43.96	0.0345	20	
Chromium	0.1016	0.0050	0.1	0.004589	97.1	75-125	0.1016	0.0846	20	
Cobalt	0.09465	0.0050	0.1	0.000591	94.1	75-125	0.09576	1.17	20	
Lead	0.1172	0.0050	0.1	0.01784	99.3	75-125	0.1168	0.286	20	
Lithium	0.102	0.010	0.1	0.004731	97.3	75-125	0.1015	0.549	20	
Molybdenum	0.1212	0.0050	0.1	0.02252	98.7	75-125	0.1211	0.0974	20	
Selenium	0.08237	0.0050	0.1	0.001515	80.9	75-125	0.08144	1.14	20	
Thallium	0.09485	0.0050	0.1	0.000042	94.8	75-125	0.09489	0.039	20	

The following samples were analyzed in this batch:

1901899-01A	1901899-02A	1901899-03A	
1901899-04A	1901899-06A	1901899-07A	
1901899-08A			

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: 131048	Instrument ID TDS	;		Method	d: A2540	C-1	1						
MBLK	Sample ID: MBLK-131048-131048						Jnits: mg/ l	L	Analys	1/24/2019 08:39 AM			
Client ID:			Run ID: TDS_190124A			SeqNo: 5495149		Prep Date: 1/2:	DF: 1				
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Total Dissolved Solids		ND	30										
LCS	Sample ID: LCS-131048	ple ID: LCS-131048-131048				Units: mg/L			Analys	is Date:	1/24/2019 08:39 AM		
Client ID:		Run ID:	Run ID: TDS_190124A				eqNo: 549	5150	Prep Date: 1/2	DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Total Dissolved Solids		470	30	495		0	94.9	85-109	0				
DUP	Sample ID: 1901899-01	B DUP				Units: mg/L			Analysis Date: 1/24/2019 08:39 AN				
Client ID: PZ1		Run ID: TDS_190124A					eqNo: 549	5154	Prep Date: 1/2	DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Total Dissolved Solids	:	1103	50	0		0	0	0-0	1007	9.1	6 10		
DUP	Sample ID: 1901938-01	A DUP				Units: mg/L			Analys	1/24/2019 08:39 AM			
Client ID:		Run ID:	Run ID: TDS_190124A				eqNo: 549	5165	Prep Date: 1/2:	DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Total Dissolved Solids		3383	50	0		0	0	0-0	3167	6.6	2 10		
The following samples were analyzed in this batch:			19	901899-01B 901899-04B 901899-08B				901899-03B 901899-07B					

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: R253411	Instrument ID Titra	ator 1		Method	: E150. 1	ı							
LCS	Sample ID: LCS-R2534	11-R25341 ⁻	1			ι	Jnits: s.u.		Ana	lysis D	Date: 1/	19/2019 0	4:00 PM
Client ID:		Run ID:	TITRAT	TOR 1_19011	9B	Se	qNo: 5486	6966	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%	RPD	RPD Limit	Qual
pH (laboratory)		4	0.10	4		0	100	90-110		0			
DUP	Sample ID: 1901680-02	2A DUP				Units: s.u.			Analysis Date: 1/19/2019 04:00 PM				4:00 PM
Client ID:	Run ID: TITRATOR 1_190				9B	Se	qNo: 5486	6987	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%	RPD	RPD Limit	Qual
pH (laboratory)		7.78	0.10	0		0	0		7.	76	0.257	20	Н
Temperature		22.51	0.10	0		0	0		22.	35	0.713		Н
DUP	Sample ID: 1901899-01	B DUP				Units: s.u.			Analysis Date: 1/19/2019 04:00 P				4:00 PM
Client ID: PZ1		Run ID: TITRATOR 1_190119B				SeqNo: 5487310			Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%	RPD	RPD Limit	Qual
pH (laboratory)		8.28	0.10	0		0	0			0			Н
Temperature		22.83	0.10	0		0	0			0			Н
The following samp	oles were analyzed in this	s batch:	19	901899-01B 901899-04B 901899-08B			899-02B 899-06B		01899-03B 01899-07B				

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: R253436	Instrument ID WET	ГСНЕМ		Method	d: A4500 -	-H B	3-11					
LCS	Sample ID: LCS-R25343	86-R25343	6			ι	Jnits: s.u.		Analys	sis Date:	1/20/2019 0	1:00 PM
Client ID:		Run ID:	WETCH	HEM_19012	OC	Se	qNo: 5487	7012	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.89	0.10	4		0	97.2	90-110	C)		
DUP	Sample ID: 1901749-02/	A DUP				ι	Jnits: s.u.		Analys	sis Date:	1/20/2019 0	1:00 PM
Client ID:		Run ID:	WETCH	HEM_19012	OC	Se	qNo: 5487	7026	Prep Date:		DF: 1	
Analyte	ı	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		8.05	0.10	0		0	0		8.02	0.37	3 20	Н
Temperature		22.6	0.10	0		0	0		22.6	i	0	Н
DUP	Sample ID: 1901966-02	A DUP				ι	Jnits: s.u.		Analys	sis Date:	1/20/2019 0	1:00 PM
Client ID:		Run ID:	WETCH	HEM_19012	OC	Se	qNo: 5487	027	Prep Date:		DF: 1	
Analyte	ı	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		6.31	0.10	0		0	0		6.34	0.47	4 20	Н
Temperature		22.4	0.10	0		0	0		22.6	0.88	9	Н

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 1901899

Project: Holland Board of Public Works

Batch ID: R253692	Instrument ID IC4		Metho	d: E300.0)						
MBLK	Sample ID: CCB/MBLK-R253	692			Uı	nits: mg/	L	Analys	is Date: 1/	22/2019 0	3:04 PN
Client ID:	Ru	n ID: IC4_1	90122A		Sec	No: 549 :	3775	Prep Date:		DF: 1	
Analyte	Result	t PQL	. SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride	ND) 1.0)								
Fluoride	ND	0.10)								
Sulfate	ND) 1.0)								
LCS	Sample ID: LCS-R253692				Uı	nits: mg/	L	Analys	is Date: 1/	22/2019 0	3:21 PI
Client ID:	Ru	n ID: IC4_1	90122A		Sec	No: 549 :	3776	Prep Date:		DF: 1	
Analyte	Result	t PQL	. SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride	9.626	6 1.0	10		0	96.3	90-110	0			
Fluoride	2.103	3 0.10	2		0	105	90-110	0			
Sulfate	9.903	3 1.0	10		0	99	90-110	0			
MS	Sample ID: 1901899-01B MS				Uı	nits: mg/	<u>L</u>	Analys	is Date: 1/	22/2019 0	8:47 PI
Client ID: PZ1	Ru	n ID: IC4_1	90122A		Sec	No: 549 :	3795	Prep Date:		DF: 20	
				SPK Ref			Control	RPD Ref Value		RPD Limit	
Analyte	Result	t PQL	. SPK Val	Value		%REC	Limit	value	%RPD	LIIIIII	Qual
Chloride	259.4		200	66.	42	96.5	80-120	0			
Fluoride	43.42		40		0	109	80-120	0			
Sulfate	200.4	4 20	200	5.	96	97.2	80-120	0			
MSD	Sample ID: 1901899-01B MSI	D			Uı	nits: mg/	L	Analys	is Date: 1/	22/2019 0	9:04 PI
Client ID: PZ1	Ru	n ID: IC4_1	90122A		Sec	No: 549 :	3796	Prep Date:		DF: 20	
Analyte	Result	t PQL	. SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride	254.6	6 20	200	66.	42	94.1	80-120	259.4	1.87	20	
Fluoride	42.59	9 2.0	40		0	106	80-120	43.42	1.93	20	
Sulfate	196	6 20	200	5.	96	95	80-120	200.4	2.24	20	
The following samp	lles were analyzed in this batc		1901899-01B 1901899-04B 1901899-08B			99-02B 99-06B	_	01899-03B 01899-07B			

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 +1 616 399 6070

Fort Collins, CO +1 970 490 1511 Holland, MI

Chain of Custody Form

Page

Houston, TX +1 281 530 5656 Spring City, PA +1 610 948 4903 South Charleston, WV +1 304 356 3168

Middletown, PA +1 717 944 5541

Salt Lake City, UT +1 801 266 7700

York, PA +1 717 505 5280

COC ID: 185452

		**	17.74.74			LS Project	Manager:	Ī				ALS	Work (Order	#: 9	01	89	9
	Customer Information			Project	Informat	tion				Pai	ramet	er/Me	thod F	eques	st for A	nalys	is	
Purchase Order		Project I	Vame					A	Meta	ls inclu	ding H	9						
Work Order		Project Nu	mber					В	Chlo	ide, Flu	ıcride,	Sulfate	!					
Company Name	NTH Consultants, Ltd.	Bill To Com	ipany	Holland	Board of	Public Work	3	C	рН									
Send Report To	Karen Okonta	Invoice	Attn	Accoun	ts Payable) 		D	TD8									
Address	41780 Six Mile Road	Ade	dress	625 Ha	stings			E	Radii	ım 226	& 228							
City/State/Zip	Northville, MI 48168	City/Stat	e/Zip	Holland	I, MI 4942	:3		G	······································						***************************************	·		
Phone	(248) 66 2-2668	P	hone	(616) 3	55-1210			H										
Fax	(248) 324-5305	2 6 6 6 6 6 6 6	Fax					ī										
e-Mail Address		e-Mail Add	dress					J							~~~~~			
No.	Sample Description	Date	TI	me	Matrix	Pres.	# Bottles	A	В	C	D	E	F	G	Н	1	J	Hold
1 721,	DB, MSD	17/19		0	gw.	6	6	14) X		Y	X						-
2 M(m) c	Y	<u> </u>	19:	30				5		\C	4	K						
3 Wm								F		P	4	4		-				
4 mw	3		3:1	0		***************************************		Ŷ	, ₂₀	X	4	4						
5 Lake			4:0	00		1		P	S	8	4	4						
· Sield	DOCUR			_		•		S	2	X	K	4						
1 held	degicale			_		To common		×		70	X	4		Proposa Inches		and the same of th		
* 650'iO	neve pour	Y			A		4	%	9	4	4	4						
9														Avenue de la constante de la c				
10												***************************************						
Sampler(s) Please P	and all all	Shipme	ent Meth	od		uired Turnam TI Std 10 W				H _{sw}		Ħ	la Hmur	Re	esults Di	ue Dat	0:	
Relinquished by:	not proting '	ime:	Receiv	ed by:				Note	;;						wee and a post of a Vallacia			
Relinquished by:		7630	Receiv	red by (Lab	oratory):	77		C	oler ID	Cool	er Temp	o, QC	Package	: (Checl	k One Bo	x Below	ð	
Logged by (Laboratory)		1030 1me: 0830		ed by (Lab	onerson)	(0)		-	RZ His	3	.2^c	7 L	Level	Stologo Stolog Stolog	C/Rew De		•	CheckList Lavel IV
Preservative Key:		H 5-Na ₂ S ₂ () ₃ 6-	-NaHSO ₄	7-Othe	8-4°C	9-5035	100				- [LEVEL	७ ः क्	STULT.			

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

ALS Group, USA

Sample Receipt Checklist

Client Name:	NTH - NORTHVILLE			Date/Time	Received:	<u>17-Jan-1</u>	<u>9 16:30</u>	
Work Order:	<u>1901899</u>			Received	by:	<u>DS</u>		
Checklist comp	eSignature	18	B-Jan-19 Date	Reviewed by:	Chad X)helton		18-Jan-19 Date
Matrices: Carrier name:	<u>Groundwater</u> <u>Client</u>							
Shipping conta	iner/cooler in good condition?		Yes	No 🗆	Not Pre	esent 🗌		
Custody seals i	intact on shipping container/coole	r?	Yes	No 🗆	Not Pre	esent 🗸		
Custody seals i	intact on sample bottles?		Yes	No 🗆	Not Pre	esent 🗹		
Chain of custoo	dy present?		Yes	No 🗆]			
Chain of custoo	dy signed when relinquished and i	eceived?	Yes 🛚	No 🗆]			
Chain of custoo	dy agrees with sample labels?		Yes	No 🗆]			
Samples in pro	per container/bottle?		Yes 🛚	No 🗆]			
Sample contain	ners intact?		Yes 🛚	✓ No □]			
Sufficient samp	le volume for indicated test?		Yes	No 🗆]			
All samples rec	eived within holding time?		Yes	No 🗆]			
Container/Tem	p Blank temperature in complianc	e?	Yes	No 🗆]			
Sample(s) rece Temperature(s)	vived on ice?)/Thermometer(s):		Yes 3.2/3.2 c			SR2		
Cooler(s)/Kit(s)	:							
	ple(s) sent to storage:			9 9:07:56 AM	N 1/04 :	1 1 20		
	als have zero headspace?		Yes L	」 No ∟	. –	als submitted	Y	
	eptable upon receipt?		Yes \		_			
pH adjusted? pH adjusted by	:		Yes L	No 🗸	N/A L			
Login Notes:								
	========							
		5.0						
Client Contacte	eu.	Date Contacted:		Perso	n Contacted:			
Contacted By:		Regarding:						
Comments:								
CorrectiveAction	n:							
							SRO	C Page 1 of 1

Ft. Collins, Colorado LIMS Version: 6.893 Page 1 of 1

Thursday, February 14, 2019

Chad Whelton ALS Environmental 3352 128th Avenue Holland, MI 49424

Re: ALS Workorder: 1901268

Project Name:

Project Number: 1901899

Dear Mr. Whelton:

Eight water samples were received from ALS Environmental, on 1/21/2019. The samples were scheduled for the following analyses:

Radium-226
Radium-228

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely,

ALS Environmental Jeff R. Kujawa Project Manager ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environmental – Fort Collins									
7.20									
Accreditation Body	License or Certification Number								
AIHA	214884								
Alaska (AK)	UST-086								
Alaska (AK)	CO01099								
Arizona (AZ)	AZ0742								
California (CA)	06251CA								
Colorado (CO)	CO01099								
Florida (FL)	E87914								
Idaho (ID)	CO01099								
Kansas (KS)	E-10381								
Kentucky (KY)	90137								
PJ-LA (DoD ELAP/ISO 170250)	95377								
Louisiana (LA)	05057								
Maryland (MD)	285								
Missouri (MO)	175								
Nebraska(NE)	NE-OS-24-13								
Nevada (NV)	CO000782008A								
New York (NY)	12036								
North Dakota (ND)	R-057								
Oklahoma (OK)	1301								
Pennsylvania (PA)	68-03116								
Tennessee (TN)	2976								
Texas (TX)	T104704241								
Utah (UT)	CO01099								
Washington (WA)	C1280								

1901268

Radium-228:

The samples were analyzed for the presence of ²²⁸Ra by low background gas flow proportional counting of ²²⁸Ac, which is the ingrown progeny of ²²⁸Ra, according to the current revision of SOP 724.

All acceptance criteria were met.

Radium-226:

The samples were prepared and analyzed according to the current revision of SOP 783.

All acceptance criteria were met.

Sample Number(s) Cross-Reference Table

OrderNum: 1901268

Client Name: ALS Environmental

Client Project Name:

Client Project Number: 1901899

Client PO Number: 20-122018917

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
MW 2	1901268-1		WATER	17-Jan-19	12:30
MW 1	1901268-2		WATER	17-Jan-19	13:50
MW 3	1901268-3		WATER	17-Jan-19	15:10
Lake	1901268-4		WATER	17-Jan-19	16:00
Field Blank	1901268-5		WATER	17-Jan-19	
Field Duplicate	1901268-6		WATER	17-Jan-19	
Equipment Blank	1901268-7		WATER	17-Jan-19	
PZ1	1901268-8		WATER	17-Jan-19	10:10

M01268 **CHAIN-OF-CUSTODY RECORD**

Subcontractor:

ALS Environmental, Fort Collins

225 Commerce Dr.

TEL:

(800) 443-1511

Page 1 of 1

Date:

18-Jan-19

COC ID: 10368

Due Date: 04-Feb-19

Fort Collins, CO 80524

FAX: Acct #:

	Salesperson	Bria	an Root														
C	Customer Information			Pro	oject Inform	ation				Par	ameter/	Method	Reques	for Ana	lysis	-	
Purchase Order			Project	Name	1901899		AS	Subco	ntrac	ted Ana	lyses (S	UBCON	TRACT	İ			
Work Order			Project	Number			В	MS	11	150							
Company Name	ALS Group USA, Corp		Bill To	Company	ALS Group	USA, Corp	С										
Send Report To	Chad Whelton		Inv Attn		Accounts F	Payable	D										
Address	3352 128th Ave		Addres	S	3352 128th	Ave	E				-						
							F									-	
City/State/Zip	Holland, Michigan 49424		City/Sta	te/Zip	Holland, M	ichigan 49424	G										
Phone	(616) 399-6070		Phone		(616) 399-6	070	Н									-	
Fax	(616) 399-6185		Fax		(616) 399-6	185	П						_				
eMail Address	chad.whelton@alsglobal.com	n	eMail C	С			J									•	
ALS Sample ID	Client Sample ID	Ma	trix	Collection	Date 24hr	Bottle	Α		В	С	D	E	F	G	Н	1	J
1901899-02C	MW 2	Groun	dwater	17/Jan/20	19 12:30	(3) 1LPHNO3	X	,				ĺ		 			1
1901899-03C	MW 1	Groun	dwater	17/Jan/20	19 13:50	(3) 1LPHNO3	X		_				l	1			i
1901899-04C	MW 3	Groun	dwater	17/Jan/20	19 15:10	(3) 1LPHNO3	X	ĺ						1		- 	1
1901899-05C	Lake	Ground	dwater	17/Jan/20	19 16:00	(3) 1LPHNO3	X	İ				i					
1901899-06C	Field Blank	Ground	dwater	17/Jan	/2019	(3) 1LPHNO3	X	Î					1	i		1	
1901899-07C	Field Duplicate	Ground	dwater	17/Jan	/2019	(3) 1LPHNO3	X	- 1					1	1		1	1
1901899-08C	Equipment Blank	Ground	dwater	17/Jan	/2019	(3) 1LPHNO3	X		_			1	1			ĺ	i
1901899-01C	PZ1	Ground	dwater	17/Jan/20	19 10:10	(9) 1LPHNO3	X		X			1	İ		1	1	

- Comments: —	Please analyze the need to be returned			indicated turnaround requireme	ents. Please inc	clude all QC with data.	The samples do not
Relinquished by: Relinquished by:		Date/Time /-/8-/8 /0	Received by: Received by:	Date/Tim	i 925a	Cooler IDs	Report/QC Level Std

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client: ALS Holland	4		Workor	der No:	190126	8		
Project Manager: JLK			- Initials: [_		1/21/	19	_
1. Are airbills / shipping documents present	and/or re	movable?	-			DROP OFF	YES	- NO
2. Are custody seals on shipping containers						MONE	YES	NO
3. Are custody seals on sample containers i						NONE	YES	NO
4. Is there a COC (chain-of-custody) presen	 ıt?						YES	NO
Is the COC in agreement with samples re matrix, requested analyses, etc.)	ceived? (1	IDs, dates,	times, # of s	samples,	# of conta	iners,	YES	NO
6. Are short-hold samples present?							YES	NO
7. Are all samples within holding times for	the reques	sted analy	ses?				MES	NO
8. Were all sample containers received intac	ct? (not b	roken or l	eaking)	-		ĺ	YES	NO
9. Is there sufficient sample for the requeste	d analyse	s?					YES	NO
10. Are all samples in the proper containers f	for the req	uested an	alyses?				YES	NO
11. Are all aqueous samples preserved correct	tly, if req	uired? (ex	cluding vo	latiles)		N/A	Œ	NO
12. Are all aqueous non-preserved samples p						N/A)	YES	NO
Are all samples requiring no headspace (of bubbles > 6 mm (1/4 inch) diameter? (VOC, GRO	O, RSK/N f green pe	MEE, Rx CN a)	N/S, rado	n) free	N/A	YES	NO
Were the samples shipped on ice?		_					YES	8
15. Were cooler temperatures measured at 0.	1-6.0°C?	IR gun used*:	#1	#3	#4	RAD ONLY	YES	(3)
Cooler #:	1	2						
Temperature (°C):	AMB	AM8						
No. of custody seals on cooler:	Ø	Ø						
DOT Survey/ Acceptance External µR/hr reading:	_11_	9						
Background μR/hr reading:	11							
Were external μR/hr readings ≤ two times background an	nd within DO	T acceptance	criteria?	P/ NO / NA	(If no, see	Form 008.)		
Additional Information: Please provide details he	ere for any N	O responses	to gray-shade	d boxes abo	ve, or any o	ther issues r	noted: - —	
								
		<u>.</u>						
	All	client bo	ttle ID's vs	s ALS la	b ID's do	uble-che	ecked by	EE
If applicable, was the client contacted? YES / NO /	_					_ Date/Tin		
Project Manager Signature / Date:	Lu	n l	-21-15			-		

Form 201r26.xls (06/29/2018)

*IR Gun #1, VWR SN 170560549 *IR Gun #3, VWR SN 170647571 *IR Gun #4, Oakton, SN 2372220101-0002

Ref: Dep: Date: 18Jan19 Wgt: 41.25 LBS

SHIPPING: SPECIAL: HANDL ING: 0.00 TOTAL:

0.000 0.00 0.00 0.00

Svcs: PRIORITY OVERNIGHT Master 4325 6707 7799 TRCK: 4325 6707 7799

ORIGIN ID:GRRA (616) 399-6070 SAMPLE RECEIVING SENVIRONMENTAL 3352 128TH AVENUE

HOLLAND, MI 494249263 UNITED STATES US

SAMPLE RECEIVING **ALS ENVIRONMENTAL** 225 COMMERCE DR

SHIP DATE: 18JAN19 ACTWGT: 41.25 LB CAD: 0122071/CAFE3211

BILL THIRD PARTY

FORT COLLINS CO 80524

(970) 490 - 1611 INU: PO:

REF:

FedEx Express

1 of 2 TRK# | 4325 6707 7799 ## MASTER ##

MON - 21 JAN 10:30A **PRIORITY OVERNIGHT**

80524

Ref: Dep:

Date: 18Jan19 Wgt: 41.70 LBS

SHIPPING: SPECIAL: HANDL ING: 0.00 TOTAL:

0.00 0.00

Svcs: PRIORITY OVERNIGHT Master 4325 6707 7799 TRCK: 4325 6707 7803

ORIGIN ID:GRRA (616) 399-6070 SAMPLE RECEIVING ALS ENVIRONMENTAL 3352 128TH AVENUE

HOLLAND, MI 494249263 UNITED STATES US

10 SAMPLE RECEIVING 225 COMMERCE DR SHIP DATE: 18JAN19 ACTWGT: 41.70 LB CAD: 0122071/CAFE3211

BILL THIRD PARTY

FORT COLLINS CO 80524

(970) 490 – 1611 INU: PO:

DEP1:

2 of 2

MON - 21 JAN 10:30A **PRIORITY OVERNIGHT**

0201

80524 DEN

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 14-Feb-19

 Project:
 1901899
 Work Order:
 1901268

 Sample ID:
 MW 2
 Lab ID:
 1901268-1

 Legal Location:
 Matrix:
 WATER

Collection Date: 1/17/2019 12:30 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation	- Method 903.1	SOI	P 783	Prep	Date: 1/22/2019	PrepBy: JXH
Ra-226	0.35 (+/- 0.27)		0.29	pCi/l	NA	1/30/2019 12:12
Carr: BARIUM	95.6		40-110	%REC	DL = NA	1/30/2019 12:12
Radium-228 Analysis by GFPC		SOI	724	Prep	Date: 1/24/2019	PrepBy: MLB
Ra-228	ND (+/- 0.38)	U	0.74	pCi/l	NA	1/31/2019 11:11
Carr: BARIUM	94.4		40-110	%REC	DL = NA	1/31/2019 11:11

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 14-Feb-19

 Project:
 1901899
 Work Order:
 1901268

 Sample ID:
 MW 1
 Lab ID:
 1901268-2

 Legal Location:
 Matrix:
 WATER

Collection Date: 1/17/2019 13:50 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emai	nation - Method 903.1	SOF	783	Prep	Date: 1/22/2019	PrepBy: JXH
Ra-226	0.32 (+/- 0.26)		0.29	pCi/l	NA	1/30/2019 12:12
Carr: BARIUM	89		40-110	%REC	DL = NA	1/30/2019 12:12
Radium-228 Analysis by GF	PC	SOF	724	Prep	Date: 1/24/2019	PrepBy: MLB
Ra-228	0.92 (+/- 0.47)		0.84	pCi/l	NA	1/31/2019 11:11
Carr: BARIUM	86.6		40-110	%REC	DL = NA	1/31/2019 11:11

Legal Location:

SAMPLE SUMMARY REPORT

Matrix: WATER

Client: ALS Environmental Date: 14-Feb-19

 Project:
 1901899

 Sample ID:
 MW 3

 Work Order:
 1901268-3

 Lab ID:
 1901268-3

Collection Date: 1/17/2019 15:10 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation	- Method 903.1	SOI	P 783	Prep	Date: 1/22/2019	PrepBy: JXH
Ra-226	ND (+/- 0.17)	U	0.38	pCi/l	NA	1/30/2019 12:44
Carr: BARIUM	95.7		40-110	%REC	DL = NA	1/30/2019 12:44
Radium-228 Analysis by GFPC		SOI	P 724	Prep	Date: 1/24/2019	PrepBy: MLB
Ra-228	ND (+/- 0.4)	U	0.74	pCi/l	NA	1/31/2019 11:11
Carr: BARIUM	93.9		40-110	%REC	DL = NA	1/31/2019 11:11

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 14-Feb-19

 Project:
 1901899
 Work Order:
 1901268

 Sample ID:
 Field Blank
 Lab ID:
 1901268-5

Legal Location: Matrix: WATER

Collection Date: 1/17/2019 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation	- Method 903.1	SOI	P 783	Prep	Date: 1/22/2019	PrepBy: JXH
Ra-226	ND (+/- 0.23)	U	0.46	pCi/l	NA	1/30/2019 12:44
Carr: BARIUM	88.9		40-110	%REC	DL = NA	1/30/2019 12:44
Radium-228 Analysis by GFPC		SOI	P 724	Prep	Date: 1/24/2019	PrepBy: MLB
Ra-228	ND (+/- 0.36)	U	0.78	pCi/l	NA	1/31/2019 11:11
Carr: BARIUM	88		40-110	%REC	DL = NA	1/31/2019 11:11

Legal Location:

SAMPLE SUMMARY REPORT

Matrix: WATER

Client: ALS Environmental Date: 14-Feb-19

 Project:
 1901899
 Work Order:
 1901268

 Sample ID:
 Field Duplicate
 Lab ID:
 1901268-6

Collection Date: 1/17/2019 Percent Moisture:

Report Dilution **Analyses** Result **Date Analyzed** Qual Limit Units **Factor** Radium-226 by Radon Emanation - Method 903.1 **SOP 783** Prep Date: 1/22/2019 PrepBy: JXH Ra-226 ND (+/- 0.25) 0.42 pCi/l 1/30/2019 12:44 NA 93.4 Carr: BARIUM 40-110 %REC DL = NA1/30/2019 12:44 Radium-228 Analysis by GFPC **SOP 724** Prep Date: 1/24/2019 PrepBy: MLB 0.9 (+/- 0.47) Ra-228 0.84 pCi/l 1/31/2019 11:11 NA Carr: BARIUM 92.4 40-110 %REC DL = NA1/31/2019 11:11

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 14-Feb-19

 Project:
 1901899
 Work Order:
 1901268

 Sample ID:
 Equipment Blank
 Lab ID:
 1901268-7

Legal Location: Matrix: WATER

Collection Date: 1/17/2019 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation	- Method 903.1	SOI	783	Prep	Date: 1/22/2019	PrepBy: JXH
Ra-226	ND (+/- 0.15)	U	0.34	pCi/l	NA	1/30/2019 12:44
Carr: BARIUM	96.6		40-110	%REC	DL = NA	1/30/2019 12:44
Radium-228 Analysis by GFPC		SOI	724	Prep	Date: 1/24/2019	PrepBy: MLB
Ra-228	ND (+/- 0.3)	U	0.68	pCi/l	NA	1/31/2019 11:11
Carr: BARIUM	93.8		40-110	%REC	DL = NA	1/31/2019 11:11

AR Page 7 of 9 **14 of 18**

LIMS Version: 6.893

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 14-Feb-19

 Project:
 1901899
 Work Order:
 1901268

 Sample ID:
 PZ1
 Lab ID:
 1901268-8

 Legal Location:
 Matrix:
 WATER

Collection Date: 1/17/2019 10:10 **Percent Moisture:**

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanatio	n - Method 903.1	SOI	P 783	Prep	Date: 1/22/2019	PrepBy: JXH
Ra-226	ND (+/- 0.2)	U	0.24	pCi/l	NA	1/30/2019 12:44
Carr: BARIUM	95.7		40-110	%REC	DL = NA	1/30/2019 12:44
Radium-228 Analysis by GFPC		SOI	P 724	Prep	Date: 1/24/2019	PrepBy: MLB
Ra-228	ND (+/- 0.32)	U	0.68	pCi/l	NA	1/31/2019 11:11
Carr: BARIUM	94.8		40-110	%REC	DI = NA	1/31/2019 11:11

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 14-Feb-19

Project: 1901899 **Work Order:** 1901268

Sample ID: PZ1 Lab ID: 1901268-8
Legal Location: Matrix: WATER

Collection Date: 1/17/2019 10:10 Percent Moisture:

Report Dilution
Analyses Result Qual Limit Units Factor Date Analyzed

Explanation of Qualifiers

Radiochemistry:

- "Report Limit" is the MDC

U or ND - Result is less than the sample specific MDC.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

W - DER is greater than Warning Limit of 1.42

* - Aliquot Basis is 'As Received' while the Report Basis is 'Dry Weight'.

- Aliquot Basis is 'Dry Weight' while the Report Basis is 'As Received'.

G - Sample density differs by more than 15% of LCS density.

D - DER is greater than Control Limit

M - Requested MDC not met.

M3 - The requested MDC was not met, but the reported activity is greater than the reported MDC.

L - LCS Recovery below lower control limit.

H - LCS Recovery above upper control limit.

P - LCS, Matrix Spike Recovery within control limits.

N - Matrix Spike Recovery outside control limits

NC - Not Calculated for duplicate results less than 5 times MDC

B - Analyte concentration greater than MDC.

B3 - Analyte concentration greater than MDC but less than Requested

MDC.

Inorganics:

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

U or ND - Indicates that the compound was analyzed for but not detected.

E - The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.

M - Duplicate injection precision was not met

N - Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.

Z - Spiked recovery not within control limits. An explanatory note may be included in the narrative.

* - Duplicate analysis (relative percent difference) not within control limits.

S - SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

U or ND - Indicates that the compound was analyzed for but not detected.

- B Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.
- E Analyte concentration exceeds the upper level of the calibration range.
- J Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).
- A A tentatively identified compound is a suspected aldol-condensation product.
- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.
- Z This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products:
- gasoline
- JP-8
- dieselmineral spirits
- mineral spirits - motor oil
- Stoddard solvent
- bunker C

Client: ALS Environmental

Work Order: 1901268 **Project:** 1901899

Date: 2/14/2019 9:49:

QC BATCH REPORT

	RE190122-2-2		trument ID Alp					,	on Emanation				
DUP	Sample ID:	1901268-8				U	nits: pCi/l		Analysi	is Date: 1	30/201	9 12:44	
Client ID: P	PZ1		Run II	D: RE190122-	2A			!	Prep Date: 1/22	/2019	DF:	NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-226			ND	0.4						0.23	0.9	2.1	U
Carr: BARI	IUM		15480		16190		95.6	40-110		15500			
LCS	Sample ID:	RE190122-2				U	nits: pCi/l		Analysi	is Date: 1	30/201	9 12:44	
Client ID:			Run II	D: RE190122-	2A			I	Prep Date: 1/22	/2019	DF:	NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-226			55 (+/- 14)	0	47.87		115	67-120					Р
Carr: BARI	IUM		14900		16150		92.3	40-110					
МВ	Sample ID:	RE190122-2				U	nits: pCi/l		Analysi	is Date: 1	30/201	9 12:44	
Client ID:			Run II	D: RE190122-	2A			ļ	Prep Date: 1/22	/2019	DF:	NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-226			ND	0.38									U
Carr: BARI	IUM		15360		16150		95.1	40-110					
The follow	wing samples	were analyzed i	in this batch:	19012 19012 19012	268-4	19012 19012 19012	68-5		1268-3 1268-6				

Client: ALS Environmental

Work Order: 1901268 **Project:** 1901899

QC BATCH REPORT

Batch ID: F	RA190124-1-2	Instrument ID LB	4100-C		Method: R	adium-228	3 Analysi	s by GFPC				
DUP	Sample ID: 1901268-8	1			U	nits: pCi/l		Analys	is Date: 1	/31/201	19 11:11	
Client ID: F	PZ1	Run II	D: RA190124 -	1A			ļ	Prep Date: 1/24	/2019	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-228		ND	0.75						0.19	0.6	2.1	U
Carr: BAR	IUM	29370		31630		92.8	40-110		29990			
LCS	Sample ID: RA190124	-1			U	nits: pCi/l		Analys	is Date: 1	/31/201	19 11:13	
Client ID:		Run II	D: RA190124 -	1A			I	Prep Date: 1/24	/2019	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-228		8.7 (+/- 2.4)	1.5	8.44		103	70-130					P,M3
Carr: BAR	IUM	30150		31580		95.5	40-110					
МВ	Sample ID: RA190124	-1			U	nits: pCi/l		Analys	is Date: 1	/31/201	19 11:11	
Client ID:		Run II	D: RA190124 -	1A			I	Prep Date: 1/24	/2019	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-228		ND	0.7									U
Carr: BAR	IUM	30790		31700		97.1	40-110					
The follow	wing samples were analy	zed in this batch:	19012 19012 19012	268-4	19012 19012 19012	68-5		1268-3 1268-6				

QC Page: 2 of 2

GROUNDWATER SAMPLE COLLECTION LOG

		GENERAL 1	NFORMA	TION						
Project Name: Holland BPW - Jame	s DeYoun	g PP	Date: 1/1	7/19						
Project #: 73-160017			Field Pers	onnel:	0					
Site Location: Holland, MI			Well Const.: Sch 40 PVC							
Well ID: PZ-1			Casing Di	ameter:	2.0"					
Sample ID (if different than Well ID)	:		Screened	Interval (ft. 1	from TOC): <u>9.0</u>)'-14.0 (12.0'-1	7.0')			
			Top of Ca	sing (ft.):	588.53					
		PURG	NG DATA							
Time: 9:00 GM Start:	Finisl	1;								
Dunging Volume	Casing Dia	meter (in)		ol. (Gal./Ft.)	3 Casing Vol					
Purging Volume				0	.04	0.1	2			
Total Well Depth (ft. from TOC) = 13-48			5	0	.10	0.3	0			
Depth to Water (ft. from TOC) = 10	100	2		0	.16	0.4	8			
Height of Water in Well (ft.)	3.44	3		0	.36	1.0	8			
	-55	4			.63	1.8	9			
Gallons Purged:		-	Purging ar	nd Sampling	Device. Per	staltic	_			
Well Volumes Purged:		-	Purging Ra	ate (g.p.m.)						
Was Well Purged Dry? Yes ~	9					g.p.m. (500 m) vdown of 0.5 ft				
	FIE	LD MONITOI					0.7 1000			
Time/Elapsed time (minutes)										
Accum. Volume Purged (gal)										
Drawdown (ft)										
рН										
Temperature (C)										
Conductivity (mS/cm)										
ORP (mV)										
Dissolved Oxygen (mg/L)										
Turbidity (NTU)										
Odor										
Appearance and/or Color										
		SAMPL	ING DATA							
Time: Start:Finish:_		_	Pump Rate	e (g.p.m.):						
Sample Collection Depth (ft. from TOC):		, 							
Weather Conditions: Air Temperature	Veather Conditions: Air Temperature (F): Wind Speed/Direction: Other:									
Samples Collected On chain of Custody	No:	Analy	ical Laborat	ory:						
Other Notes:										

ow can I auto-import these files?

Location Properties

Location Name = Holland

Location ID = 4cb0efa1-7517-477f-818c-baf957310dac

Report Properties

Start Time = 2019-01-17 07:26:35 Duration = 01:15:01 Readings = 26 Time Offset = -07:00:00

Instrument Properties

Device Model = Aqua TROLL 600 Device SN = 613192 Device Firmware = 2.03

Log Properties

Log Name = Pz1 Log Type = Linear Log File Number = 12

Log ID = 17af223e-76e7-44b7-8f66-dd01e6bebcd4

Interval = 00:03:00

Date Time	Actual Conductivity (mS/cm) (514259)	Specific Conductivity (mS/cm) (514259)	pH (pH) (574732)	ORP (mV) (574732)	RDO Concentration (mg/L) (6134
2019-01-17 07:26:35	1.315286	1.629821	8.026401	-40.08151	5.610841
2019-01-17 07:29:35	1.262591	1.728237	8.075583	-172.6995	0.2986336
2019-01-17 07:32:35	1.304392	1.805922	8.182116	-200.5372	0.2727581
2019-01-17 07:35:35	1.27748	1.770468	8.25927	-219.7156	0.2224432
2019-01-17 07:38:35	1.24508	1.72624	8.318521	-232.9359	0.1583926
2019-01-17 07:41:35	1.212969	1.681709	8.386586	-244.0867	0.1254342
2019-01-17 07:44:35	1.185367	1.640905	8.420275	-250.2952	0.1206692
2019-01-17 07:47:35	1.246408	1.725664	8.456868	-252.82	0.1202359
2019-01-17 07:50:35	1.218615	1.685407	8.493444	-260.664	0.09619176
2019-01-17 07:53:35	1.246908	1.725151	8.481239	-261.961	0.1017681
2019-01-17 07:56:35	1.210073	1.67031	8.542547	-268.1194	0.09109085
2019-01-17 07:59:35	1.214688	1.676194	8.541534	-270.9518	0.08499835
2019-01-17 08:02:36	1.207859	1.669984	8.542619	-269.0682	0.09458438
2019-01-17 08:05:36	1.190108	1.643923	8.576078	-273.8891	0.07529208
2019-01-17 08:08:36	1.193239	1.648681	8.584923	-276.2685	0.07130123
2019-01-17 08:11:36	1.203872	1.665735	8.559994	-275.7797	0.07223513
2019-01-17 08:14:36	1.185609	1.637907	8.586613	-277.9732	0.06851099
2019-01-17 08:17:36	1.189665	1.642607	8.594194	-278.9126	0.07148863
2019-01-17 08:20:36	1.199575	1.655992	8.614988	-278.0352	0.07534339
2019-01-17 08:23:36	1.140877	1.571715	8.614353	-278.6527	0.08320161
2019-01-17 08:26:36	1.179621	1.622139	8.652475	-282.4721	0.06696457
2019-01-17 08:29:36	1.191119	1.640992	8.645921	-280.0975	0.07553756
2019-01-17 08:32:36	1.10171	1.516579	8.658098	-281.0369	0.07645576
2019-01-17 08:35:36	1.163665	1.601091	8.657898	-281.404	0.07329725
2019-01-17 08:38:36	1.140229	1.566219	8.683408	-283.9003	0.06182642
2019-01-17 08:41:36	1.058968	1.454978	8.683287	-284.0934	0.06279154

Log Notes

2019-01-17 07:26:35 Started 2019-01-17 08:43:01 Stopped

GROUNDWATER SAMPLE COLLECTION LOG

		GENERAL I	INFORMA	TION					
Project Name: Holland BPW - J	ames DeYoun	g PP	Date: _/	17/19					
Project #: 73-160017			Field Pers	onnel:O	0				
Site Location: Holland, MI		a	Well Const.: Sch 40 PVC						
Well ID: MW-1			Casing Diameter: 2.0"						
Sample ID (if different than Well	ID):		Screened	Interval (ft. fi	rom TOC): <u>9.0</u>)'-14.0 (12.0'-1	7.0')		
			Top of Ca	sing (ft.):	588.53				
		PURG	NG DATA		,				
Time: 12:95 pm Start:		Finish							
Purging Volume		Casing Dia			l. (Gal./Ft.)	3 Casing Vo			
5 \$		1			04	0.1			
Total Well Depth (ft. from TOC)		1.:			10	0.3			
Depth to Water (ft. from TOC) =	6-49	2			16	0.4			
Height of Water in Well (ft.)	⁻ 10.35	3			36	1.0			
	= 1.66	4		0.	1	1.8	9		
Gallons Purged:		-	1		Device: pen	stalbc			
Well Volumes Purged:			Purging Rate (g.p.m.) Note: Average low flow rate of 0.13 g.p.m. (500 mL/min) on a						
Was Well Purged Dry? Yes ~	10~					g.p.m. (500 m vdown of 0.5 ft			
	FIE	LD MONITOI							
Time/Elapsed time (minutes)									
Accum. Volume Purged (gal)									
Drawdown (ft)									
pH									
Temperature (C)									
Conductivity (mS/cm)									
ORP (mV)									
Dissolved Oxygen (mg/L)									
Turbidity (NTU)									
Odor									
Appearance and/or Color									
		SAMPL	ING DATA						
Time: Start:Finis			Pump Rate	(g.p.m.):					
Sample Collection Depth (ft. from T									
Weather Conditions: Air Temperat	ure (F):	Wind	Speed/Direc	tion:	Other:_				
Samples Collected On chain of Cust	tody No:	Analyt	ical Laborat	ory:		=======================================			
Other Notes:	= -								

Location Properties

Location Name = Holland

Location ID = 4cb0efa1-7517-477f-818c-baf957310dac

Report Properties

Start Time = 2019-01-17 10:53:52 Duration = 01:03:00 Readings = 22 Time Offset = -07:00:00

Instrument Properties

Device Model = Aqua TROLL 600 Device SN = 613192 Device Firmware = 2.03

Log Properties

Log Name = Mw1 Log Type = Linear Log File Number = 14 Log ID = b3bcc9f8-e6f0-4d68-878f-b7784845fd78

Interval = 00:03:00

Date Time	Actual Conductivity (mS/cm) (514259)	Specific Conductivity (mS/cm) (514259)	pH (pH) (574732)	ORP (mV) (574732)	RDO Concentration (mg/L) (6134
2019-01-17 10:53:52	0.8714126	1.353594	7.345048	-129.622	6.273852
2019-01-17 10:56:52	0.9098028	1.398098	7.270452	-167.2683	0.1810241
2019-01-17 10:59:52	1.052984	1.607127	7.235519	-177.6967	0.10645
2019-01-17 11:02:52	1.137123	1.728643	7.229474	-185.1997	0.07466428
2019-01-17 11:05:52	1.155959	1.756293	7.226521	-189.8966	0.06155317
2019-01-17 11:08:52	1.163236	1.766716	7.226052	-193.8114	0.05347696
2019-01-17 11:11:52	1.167683	1.772212	7.21764	-196.4746	0.04716953
2019-01-17 11:14:52	1.165265	1.767352	7.224954	-198.3342	0.04346351
2019-01-17 11:17:52	1.177571	1.786645	7.211395	-200.0747	0.03947593
2019-01-17 11:20:52	1.174458	1.780617	7.221687	-201.2668	0.0379401
2019-01-17 11:23:52	1.188335	1.802475	7.209691	-202.6162	0.03569902
2019-01-17 11:26:52	1.182876	1.792837	7.210677	-203.5699	0.03359016
2019-01-17 11:29:52	1.179729	1.788159	7.221588	-204.7262	0.03233315
2019-01-17 11:32:52	1.19145	1.80471	7.21075	-205.513	0.03144205
2019-01-17 11:35:52	1.191889	1.80516	7.221655	-206.1472	0.03001758
2019-01-17 11:38:52	1.187088	1.797724	7.208086	-206.5311	0.02970612
2019-01-17 11:41:52	1.194384	1.808161	7.204088	-207.1176	0.02803294
2019-01-17 11:44:52	1.207964	1.827931	7.221582	-207.7971	0.02803568
2019-01-17 11:47:52	1.19742	1.811139	7.207866	-208.0236	0.02758056
2019-01-17 11:50:52	1.192751	1.803796	7.203462	-208.2953	0.02761245
2019-01-17 11:53:52	1.197939	1.812181	7.209658	-208.9749	0.02714199
2019-01-17 11:56:52	1.181354	1.786613	7.20548	-209.4111	0.02622822

Log Notes

2019-01-17 10:53:52 Started 2019-01-17 11:58:11 Stopped

GROUNDWATER SAMPLE COLLECTION LOG

	G	ENERAL I	NFORMA'	TION					
Project Name: Holland BPW - James De	Young 1	PP	Date: _//	17/19					
Project #: 73-160017			Field Pers	onnel: _CC)				
Site Location: Holland, MI			Well Const.: Sch 40 PVC						
Well ID: MW-2			Casing Diameter: 2.0"						
Sample ID (if different than Well ID):			Screened 1	Interval (ft. fr	om TOC) <u>:</u> 8	3.0'-13.0 (14.0	·-19.0')		
			Top of Ca	sing (ft.):	585.49				
		PURG	NG DATA						
Time: :00 cm Start:		Finisl							
Purging Volume		Casing Dia		Casing Vol		3 Casing Vo			
				0.0		0.1			
Total Well Depth (ft. from TOC) =	5	1.:		0.1		0.3	30		
Depth to Water (ft. from TOC) = 4.2	2	2		0.1		0.4			
Height of Water in Well (ft.) = //, 83	3	3		0.3		1.0)8		
One Well Volume (gallons) = 1.50	}	4		0.6		1.8	39		
Gallons Purged:			Purging an	d Sampling I	Device: per	istaltic			
Well Volumes Purged:			Purging Rate (g.p.m.)						
Was Well Purged Dry? Yes ~ No~						g.p.m. (500 m vdown of 0.5 fi			
	FIELD	MONITO	RING PARA		and in a dray	VGO WH 01 0.5 1	01 1035		
Time/Elapsed time (minutes)									
Accum. Volume Purged (gal)									
Drawdown (ft)									
рН									
Temperature (C)									
Conductivity (mS/cm)									
ORP (mV)									
Dissolved Oxygen (mg/L)									
Turbidity (NTU)									
Odor									
Appearance and/or Color									
		SAMPL	ING DATA						
Time: Start:Finish:			Pump Rate	(g.p.m.):					
Sample Collection Depth (ft. from TOC):									
Weather Conditions: Air Temperature (F):_	Veather Conditions: Air Temperature (F): Wind Speed/Direction: Other:								
Samples Collected On chain of Custody No:		Analy	ical Laborat	ory:		2			
Other Notes:									

ow can I auto-import these files?

Location Properties

Location Name = Holland

Location ID = 4cb0efa1-7517-477f-818c-baf957310dac

Report Properties

Start Time = 2019-01-17 09:34:00 Duration = 01:06:00 Readings = 23 Time Offset = -07:00:00

Instrument Properties

Device Model = Aqua TROLL 600 Device SN = 613192 Device Firmware = 2.03

Log Properties

Log Name = Mw2 Log Type = Linear Log File Number = 13

Log ID = 843648f7-6c4b-4817-9472-11a9b77be77f

Interval = 00:03:00

Date Time	Actual Conductivity (mS/cm) (514259)	Specific Conductivity (mS/cm) (514259)	pH (pH) (574732)	ORP (mV) (574732)	RDO Concentration (mg/L) (6134
2019-01-17 09:34:00	1.454452	2.400892	7.799249	-170.4345	9.706652
2019-01-17 09:37:00	1.586824	2.410476	7.183096	-185.4095	0.4628184
2019-01-17 09:40:00	1.582807	2.376003	7.199814	-193.2225	0.2131742
2019-01-17 09:43:00	1.580422	2.360132	7.211332	-194.4909	0.1732591
2019-01-17 09:46:00	1.58514	2.355523	7.222386	-192.369	0.1245317
2019-01-17 09:49:00	1.574603	2.32876	7.228267	-197.216	0.1116866
2019-01-17 09:52:00	1.594972	2.35187	7.233377	-199.6455	0.1059857
2019-01-17 09:55:00	1.569162	2.309302	7.240528	-198.5178	0.0891292
2019-01-17 09:58:00	1.515119	2.227323	7.239075	-199.7767	0.07972211
2019-01-17 10:01:00	1.512953	2.221415	7.245151	-200.933	0.0785424
2019-01-17 10:04:00	1.588857	2.331124	7.246723	-202.2157	0.07335639
2019-01-17 10:07:00	1.553405	2.276984	7.24532	-203.825	0.06838582
2019-01-17 10:10:00	1.564354	2.288698	7.248129	-204.6738	0.06638151
2019-01-17 10:13:00	1.535009	2.249562	7.243214	-204.0134	0.06788829
2019-01-17 10:16:00	1.585347	2.321081	7.24779	-202.7188	0.06171045
2019-01-17 10:19:00	1.564159	2.287647	7.242414	-202.7307	0.0611716
2019-01-17 10:22:00	1.559373	2.282978	7.24359	-204.6738	0.05761772
2019-01-17 10:25:00	1.630706	2.37702	7.240838	-205.8301	0.05294251
2019-01-17 10:28:00	1.608093	2.349859	7.24471	-205.5631	0.05314375
2019-01-17 10:31:00	1.621336	2.36907	7.246807	-205.5798	0.05223969
2019-01-17 10:34:00	1.619855	2.366829	7.242471	-205.7133	0.0514215
2019-01-17 10:37:00	1.609902	2.352661	7.243389	-205.5869	0.05196403
2019-01-17 10:40:00	1.618331	2.35972	7.236971	-206.4715	0.04945258

Log Notes

2019-01-17 09:34:00 Started 2019-01-17 10:41:53 Stopped

GROUNDWATER SAMPLE COLLECTION LOG

	GENERAL INFORMATION									
Project Name: Holland BPW - James DeYou	ng PP	Date:	719			_				
Project #: 73-160017		Field Person	nnel:							
Site Location: Holland, MI		Well Const.	:Sch 4	0 PVC						
Well ID: MW-3		Casing Diameter: 2.0"								
Sample ID (if different than Well ID):		Screened Interval (ft. from TOC): 10.0'-15.0- bgs (13.0'-18.0')								
		Top of Casi	ng (ft.): <u>58</u>	5.30		_				
PURGING DATA										
Time: Start:		ish:								
Purging Volume	Casing D	iameter (in)	Casing Vol. (G	al./Ft.)	3 Casing Vol.	(Gal./Ft.)				
		1	0.04		0.12					
Total Well Depth (ft. from TOC) =/8.22		1.5	0.10		0.30					
Depth to Water (ft. from TOC) = 4.31		2	0.16		0.48					
Height of Water in Well (ft.) = 13.9/		3	0.36		1.08					
One Well Volume (gallons) = 2.23		4	0.63		1.89					
Gallons Purged:		Purging and	Sampling Device	Peri	Stalfic					
Well Volumes Purged:		Purging Rate (g.p.m.)								
Was Well Purged Dry? Yes ~ No					g.p.m. (500 mL/m down of 0.5 ft or 1					
FI	ELD MONIT	ORING PARA	METERS							
Time/Elapsed time (minutes)										
Accum. Volume Purged (gal)										
Drawdown (ft)										
pH										
Temperature (C)										
Conductivity (mS/cm)										
ORP (mV)										
Dissolved Oxygen (mg/L)										
Turbidity (NTU)										
Odor										
Appearance and/or Color						-				
4	SAMI	PLING DATA								
Time: Start:Finish:		Pump Rate (g.p.m.):							
Sample Collection Depth (ft. from TOC):		E								
Weather Conditions: Air Temperature (F):	Veather Conditions: Air Temperature (F): Wind Speed/Direction: Other:									
Samples Collected On chain of Custody No:	Ana	_ Analytical Laboratory:								
Other Notes:										

Location Properties

Location Name = Holland

Location ID = 4cb0efa1-7517-477f-818c-baf957310dac

Report Properties

Start Time = 2019-01-17 12:21:52 Duration = 01:00:00 Readings = 21 Time Offset = -07:00:00

Instrument Properties

Device Model = Aqua TROLL 600 Device SN = 613192 Device Firmware = 2.03

Log Properties

Log Name = Mw3 Log Type = Linear Log File Number = 15 Log ID = fb8a484f-9ae3-46c4-8684-d422dc29a259

Interval = 00:03:00

Date Time	Actual Conductivity (mS/cm) (514259)	Specific Conductivity (mS/cm) (514259)	pH (pH) (574732)	ORP (mV) (574732)	RDO Concentration (mg/L) (6134
2019-01-17 12:21:52	0.0006963075	0.001142014	7.330477	-51.28241	12.08124
2019-01-17 12:24:52	2.147605	3.199658	6.469272	-59.69859	0.6257157
2019-01-17 12:27:52	2.265138	3.247237	6.431755	-81.14673	0.1205349
2019-01-17 12:30:52	2.210331	3.11997	6.421801	-95.31594	0.08761287
2019-01-17 12:33:52	2.192512	3.082631	6.42036	-105.2485	0.0749193
2019-01-17 12:36:52	2.289778	3.202185	6.412853	-114.449	0.05980064
2019-01-17 12:39:52	2.305679	3.216878	6.416699	-120.4643	0.05594483
2019-01-17 12:42:52	2.30431	3.204369	6.417168	-125.6285	0.04684435
2019-01-17 12:45:52	2.287396	3.187157	6.414121	-131.2313	0.04851895
2019-01-17 12:48:52	2.306314	3.202471	6.404902	-134.8386	0.04528769
2019-01-17 12:51:52	2.306641	3.199067	6.412107	-137.7187	0.04200687
2019-01-17 12:54:52	2.311741	3.196975	6.411324	-139.8788	0.0349768
2019-01-17 12:57:52	2.311354	3.197654	6.415599	-140.9779	0.03571354
2019-01-17 13:00:52	2.306593	3.190238	6.408823	-142.3059	0.03201665
2019-01-17 13:03:52	2.308136	3.189552	6.406035	-143.0283	0.03150226
2019-01-17 13:06:52	2.311664	3.188174	6.424478	-144.9928	0.02740081
2019-01-17 13:09:52	2.18101	3.008644	6.413774	-145.062	0.02908192
2019-01-17 13:12:52	2.179306	3.003108	6.413944	-146.6236	0.0237521
2019-01-17 13:15:52	2.180367	2.999306	6.429059	-148.0422	0.02140461
2019-01-17 13:18:52	2.171118	2.986481	6.427658	-149.5585	0.02366948
2019-01-17 13:21:52	0.001325994	0.001848411	6.933884	-70.04834	10.50629

Log Notes

2019-01-17 12:21:52 Started 2019-01-17 13:24:17 Stopped

28-Jan-2020

Karen Okonta NTH Consultants, Ltd. 41780 Six Mile Road Northville, MI 48168

Re: Holland Board of Public Works Work Order: 19091067

Dear Karen,

ALS Environmental received 7 samples on 16-Sep-2019 05:10 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 35.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MI: 0022

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 28-Jan-20

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works

Work Order: 19091067

Work Order Sample Summary

Lab Samp ID	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
19091067-01	PZ-1	Groundwater		9/16/2019 10:30	9/16/2019 17:10	
19091067-02	MW-4	Groundwater		9/16/2019 13:30	9/16/2019 17:10	
19091067-03	MW-1	Groundwater		9/16/2019 14:05	9/16/2019 17:10	
19091067-04	MW-2	Groundwater		9/16/2019 15:30	9/16/2019 17:10	
19091067-05	Field Duplicate	Groundwater		9/16/2019	9/16/2019 17:10	
19091067-06	EQB	Water		9/16/2019	9/16/2019 17:10	
19091067-07	Field Blank	Water		9/16/2019	9/16/2019 17:10	

Date: 28-Jan-20

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Case Narrative

Work Order: 19091067

Samples for the above noted Work Order were received on 09/16/2019. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Metals:

Batch 142726, Method ICP_6020_W, Sample 19091067-02A MS: The MS recovery was outside of the control limit for Calcium; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required.

Wet Chemistry:

Batch R270910, Method PH_4500_W, Sample LCS-R270910: Sample was processed outside of holding time for pH, as the analysis is a field test and holding time is defined as 15 minutes.

Batch R270992, Method PH_4500_W, Sample LCS-R270992: Sample was processed outside of holding time for pH, as the analysis is a field test and holding time is defined as 15 minutes.

Radium 226/228 analysis performed by ALS Fort Collins laboratory.

Qualifier	Description			
*	Value exceeds Regulatory Limit			
**	Estimated Value			
a	Analyte is non-accredited			
В	Analyte detected in the associated Method Blank above the Reporting Limit			
E	Value above quantitation range			
Н	Analyzed outside of Holding Time			
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.			
J	Analyte is present at an estimated concentration between the MDL and Report Limit			
ND	Not Detected at the Reporting Limit			
О	Sample amount is > 4 times amount spiked			
P	Dual Column results percent difference > 40%			
R	RPD above laboratory control limit			
S	Spike Recovery outside laboratory control limits			
U Analyzed but not detected above the MDL				
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.			
Acronym	<u>Description</u>			
DUP	Method Duplicate			
LCS	Laboratory Control Sample			
LCSD	Laboratory Control Sample Duplicate			
LOD	Limit of Detection (see MDL)			
LOQ	Limit of Quantitation (see PQL)			
MBLK	Method Blank			
MDL	Method Detection Limit			
MS	Matrix Spike			
MSD	Matrix Spike Duplicate			
PQL	Practical Quantitation Limit			
RPD	Relative Percent Difference			
TDL	Target Detection Limit			
TNTC	Too Numerous To Count			
A	APHA Standard Methods			
D	ASTM			
E	EPA			
SW	SW-846 Update III			
Units Reported	ted Description			
$^{\circ}\mathrm{C}$	Degrees Celcius			
as noted				
mg/L	Milligrams per Liter			
s.u.	Standard Units			

Date: 28-Jan-20

ALS Group, USA

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19091067

Sample ID: PZ-1 **Lab ID:** 19091067-01

Collection Date: 9/16/2019 10:30 AM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7470A		Prep: SW7470 9/25/19 12:59	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	9/25/2019 03:23 PM
METALS BY ICP-MS			SW602	20A	Prep: SW3005A 9/20/19 09:40	Analyst: STP
Antimony	ND		0.0050	mg/L	1	9/20/2019 03:32 PM
Arsenic	0.056		0.0050	mg/L	1	9/20/2019 03:32 PM
Barium	0.074		0.0050	mg/L	1	9/20/2019 03:32 PM
Beryllium	ND		0.0020	mg/L	1	9/20/2019 03:32 PM
Boron	0.47		0.020	mg/L	1	9/20/2019 03:32 PM
Cadmium	ND		0.0020	mg/L	1	9/20/2019 03:32 PM
Calcium	53		0.50	mg/L	1	9/20/2019 03:32 PM
Chromium	ND		0.0050	mg/L	1	9/20/2019 03:32 PM
Cobalt	ND		0.0050	mg/L	1	9/20/2019 03:32 PM
Lead	0.027		0.0050	mg/L	1	9/20/2019 03:32 PM
Lithium	ND		0.010	mg/L	1	9/20/2019 03:32 PM
Molybdenum	0.021		0.0050	mg/L	1	9/20/2019 03:32 PM
Selenium	ND		0.0050	mg/L	1	9/20/2019 03:32 PM
Thallium	ND		0.0020	mg/L	1	9/20/2019 03:32 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	40		10	mg/L	10	9/18/2019 03:06 PM
Fluoride	ND		1.0	mg/L	1	9/18/2019 02:49 PM
Sulfate	28		20	mg/L	10	9/18/2019 03:06 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	8.08	Н	0.100	s.u.	1	9/19/2019 11:14 AM
Temperature	18.6	Н	0.100	°C	1	9/19/2019 11:14 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 9/18/19 14:36	Analyst: ERW
Total Dissolved Solids	1,200		50	mg/L	1	9/20/2019 01:00 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRAC as not		Analyst: ALS 10/18/2019

Note: See Qualifiers page for a list of qualifiers and their definitions.

ALS Group, USA

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19091067

Sample ID: MW-1 **Lab ID:** 19091067-03

Collection Date: 9/16/2019 02:05 PM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 9/25/19 12:59	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	9/25/2019 03:26 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 9/20/19 09:40	Analyst: STP
Antimony	ND		0.0050	mg/L	1	9/20/2019 03:40 PM
Arsenic	0.039		0.0050	mg/L	1	9/20/2019 03:40 PM
Barium	0.29		0.0050	mg/L	1	9/20/2019 03:40 PM
Beryllium	ND		0.0020	mg/L	1	9/20/2019 03:40 PM
Boron	1.4		0.020	mg/L	1	9/20/2019 03:40 PM
Cadmium	ND		0.0020	mg/L	1	9/20/2019 03:40 PM
Calcium	110		0.50	mg/L	1	9/20/2019 03:40 PM
Chromium	ND		0.0050	mg/L	1	9/20/2019 03:40 PM
Cobalt	ND		0.0050	mg/L	1	9/20/2019 03:40 PM
Lead	ND		0.0050	mg/L	1	9/20/2019 03:40 PM
Lithium	0.14		0.010	mg/L	1	9/20/2019 03:40 PM
Molybdenum	ND		0.0050	mg/L	1	9/20/2019 03:40 PM
Selenium	ND		0.0050	mg/L	1	9/20/2019 03:40 PM
Thallium	ND		0.0020	mg/L	1	9/20/2019 03:40 PM
ANIONS BY ION CHROMATOGRAPHY	,		E300.0			Analyst: JDR
Chloride	180		20	mg/L	20	9/18/2019 05:19 PM
Fluoride	ND		1.0	mg/L	1	9/18/2019 04:02 PM
Sulfate	39		10	mg/L	5	9/18/2019 04:21 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	6.96	Н	0.100	s.u.	1	9/19/2019 11:14 AM
Temperature	18.8	Н	0.100	°C	1	9/19/2019 11:14 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 9/18/19 14:36	Analyst: ERW
Total Dissolved Solids	1,100		100	mg/L	1	9/20/2019 01:00 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRAC ⁻ as not		Analyst: ALS 10/18/2019

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19091067

Sample ID: MW-2 Lab ID: 19091067-04

Collection Date: 9/16/2019 03:30 PM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 9/25/19 12:59	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	9/25/2019 03:28 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 9/20/19 09:40	Analyst: STP
Antimony	ND		0.0050	mg/L	1	9/20/2019 03:42 PM
Arsenic	n 0.0050 r		mg/L	1	9/20/2019 03:42 PM	
Barium	0.16		0.0050	mg/L	1	9/20/2019 03:42 PM
Beryllium	ND		0.0020	mg/L	1	9/20/2019 03:42 PM
Boron	0.75		0.020	mg/L	1	9/20/2019 03:42 PM
Cadmium	ND		0.0020	mg/L	1	9/20/2019 03:42 PM
Calcium	47		0.50	mg/L	1	9/20/2019 03:42 PM
Chromium	ND		0.0050	mg/L	1	9/20/2019 03:42 PM
Cobalt	ND		0.0050	mg/L	1	9/20/2019 03:42 PM
Lead	ND		0.0050	mg/L	1	9/20/2019 03:42 PM
Lithium	0.012		0.010	mg/L	1	9/20/2019 03:42 PM
Molybdenum	ND		0.0050	mg/L	1	9/20/2019 03:42 PM
Selenium	ND		0.0050	mg/L	1	9/20/2019 03:42 PM
Thallium	ND		0.0020	mg/L	1	9/20/2019 03:42 PM
ANIONS BY ION CHROMATOGRAPH	Y		E300.0			Analyst: JDR
Chloride	560		50	mg/L	50	9/18/2019 02:33 PM
Fluoride	ND		2.0	mg/L	2	9/18/2019 02:17 PM
Sulfate	ND		4.0	mg/L	2	9/18/2019 02:17 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	7.15	Н	0.100	s.u.	1	9/19/2019 11:14 AM
Temperature	18.9	Н	0.100	°C	1	9/19/2019 11:14 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 9/18/19 14:36	Analyst: ERW
Total Dissolved Solids	1,400		100	mg/L	1	9/20/2019 01:00 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRAC [*] as not		Analyst: ALS 10/18/2019

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19091067

Sample ID: Field Duplicate Lab ID: 19091067-05

Collection Date: 9/16/2019 Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 9/25/19 12:59	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	9/25/2019 03:30 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 9/20/19 09:40	Analyst: STP
Antimony	ND		0.0050	mg/L	1	9/20/2019 03:44 PM
Arsenic	0.038		0.0050	mg/L	1	9/20/2019 03:44 PM
Barium	0.28		0.0050	mg/L	1	9/20/2019 03:44 PM
Beryllium	ND		0.0020	mg/L	1	9/20/2019 03:44 PM
Boron	1.5		0.020	mg/L	1	9/20/2019 03:44 PM
Cadmium	ND		0.0020	mg/L	1	9/20/2019 03:44 PM
Calcium	110		0.50	mg/L	1	9/20/2019 03:44 PM
Chromium	ND		0.0050	mg/L	1	9/20/2019 03:44 PM
Cobalt	ND		0.0050	mg/L	1	9/20/2019 03:44 PM
Lead	ND		0.0050	mg/L	1	9/20/2019 03:44 PM
Lithium	0.14		0.010	mg/L	1	9/20/2019 03:44 PM
Molybdenum	ND		0.0050	mg/L	1	9/20/2019 03:44 PM
Selenium	ND		0.0050	mg/L	1	9/20/2019 03:44 PM
Thallium	ND		0.0020	mg/L	1	9/20/2019 03:44 PM
ANIONS BY ION CHROMATOGRAP	HY		E300.0			Analyst: JDR
Chloride	180		20	mg/L	20	9/18/2019 06:16 PM
Fluoride	ND		1.0	mg/L	1	9/18/2019 05:38 PM
Sulfate	39		10	mg/L	5	9/18/2019 05:57 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	6.99	Н	0.100	s.u.	1	9/19/2019 11:14 AM
Temperature	19.2	Н	0.100	°C	1	9/19/2019 11:14 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 9/18/19 14:36	Analyst: ERW
Total Dissolved Solids	990		100	mg/L	1	9/20/2019 01:00 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRAC [*] as not		Analyst: ALS 10/18/2019

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19091067

Sample ID:EQBLab ID:19091067-06Collection Date:9/16/2019Matrix:WATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 9/25/19 12:59	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	9/25/2019 03:39 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 9/20/19 09:40	Analyst: STP
Antimony	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Arsenic	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Barium	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Beryllium	ND		0.0020	mg/L	1	9/20/2019 03:45 PM
Boron	0.032		0.020	mg/L	1	9/20/2019 03:45 PM
Cadmium	ND		0.0020	mg/L	1	9/20/2019 03:45 PM
Calcium	ND		0.50	mg/L	1	9/20/2019 03:45 PM
Chromium	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Cobalt	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Lead	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Lithium	ND		0.010	mg/L	1	9/20/2019 03:45 PM
Molybdenum	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Selenium	ND		0.0050	mg/L	1	9/20/2019 03:45 PM
Thallium	ND		0.0020	mg/L	1	9/20/2019 03:45 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	ND		1.0	mg/L	1	9/18/2019 01:45 PM
Fluoride	ND		1.0	mg/L	1	9/18/2019 01:45 PM
Sulfate	ND		2.0	mg/L	1	9/18/2019 01:45 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DVD
pH (laboratory)	6.76	Н	0.100	s.u.	1	9/19/2019 11:14 AM
Temperature	19.5	Н	0.100	°C	1	9/19/2019 11:14 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 9/18/19 14:36	Analyst: ERW
Total Dissolved Solids	60		50	mg/L	1	9/20/2019 01:00 PM
SUBCONTRACTED ANALYSES			SUBC	ONTRAC	Г	Analyst: ALS
Subcontracted Analyses S	ee attached			as no	ted 1	10/18/2019

Client: NTH Consultants, Ltd.

Project:Holland Board of Public WorksWork Order: 19091067Sample ID:Field BlankLab ID: 19091067-07

Date: 28-Jan-20

Sample ID:Field BlankLab ID: 19091067Collection Date:9/16/2019Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 9/25/19 12:59	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	9/25/2019 03:41 PM
METALS BY ICP-MS			SW602	20A	Prep: SW3005A 9/20/19 09:40	Analyst: STP
Antimony	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Arsenic	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Barium	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Beryllium	ND		0.0020	mg/L	1	9/20/2019 03:54 PM
Boron	ND		0.020	mg/L	1	9/23/2019 04:31 PM
Cadmium	ND		0.0020	mg/L	1	9/20/2019 03:54 PM
Calcium	ND		0.50	mg/L	1	9/20/2019 03:54 PM
Chromium	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Cobalt	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Lead	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Lithium	ND		0.010	mg/L	1	9/20/2019 03:54 PM
Molybdenum	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Selenium	ND		0.0050	mg/L	1	9/20/2019 03:54 PM
Thallium	ND		0.0020	mg/L	1	9/20/2019 03:54 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	ND		1.0	mg/L	1	9/18/2019 02:01 PM
Fluoride	ND		1.0	mg/L	1	9/18/2019 02:01 PM
Sulfate	ND		2.0	mg/L	1	9/18/2019 02:01 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: DNW
pH (laboratory)	5.79	Н	0.100	s.u.	1	9/20/2019 01:00 PM
Temperature	16.1	Н	0.100	°C	1	9/20/2019 01:00 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 9/18/19 14:36	Analyst: ERW
Total Dissolved Solids	ND		30	mg/L	1	9/20/2019 01:00 PM
SUBCONTRACTED ANALYSES			SUBC	ONTRAC	Т	Analyst: ALS
Subcontracted Analyses S	ee attached			as no	ted 1	10/18/2019

Client:

Date: 28-Jan-20 NTH Consultants, Ltd.

19091067 Work Order:

Project: Holland Board of Public Works QC BATCH REPORT

Batch ID: 142993	Instrument ID HG4		Metho	d: SW74 7	70A					
MBLK	Sample ID: MBLK-142993-1429	993			Units: mg/	L	Analys	is Date:	9/25/2019 0	2:48 PN
Client ID:	Run	ID: HG4_1	90925A		SeqNo: 594	5335	Prep Date: 9/2	5/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.00020								
LCS	Sample ID: LCS-142993-14299	3			Units: mg/	L	Analys	is Date:	9/25/2019 0	2:50 PM
Client ID:	Run	ID: HG4_1	90925A		SeqNo: 594	5336	Prep Date: 9/2	5/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.001953	0.00020	0.002		0 97.6	80-120	0			
MS	Sample ID: 19091067-02AMS				Units: mg/	L	Analys	is Date:	9/25/2019 0	2:59 PI
Client ID: MW-4	Run	ID: HG4_1	90925A		SeqNo: 594	5340	Prep Date: 9/2	5/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.001656	0.00020	0.002	0.0000	51 80.2	75-125	0			
MSD	Sample ID: 19091067-02AMSD				Units: mg/	L	Analys	is Date:	9/25/2019 0	3:01 PI
Client ID: MW-4	Run	ID: HG4_1	90925A		SeqNo: 594	5341	Prep Date: 9/2	5/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.00182	0.00020	0.002	0.0000	51 88.4	75-125	0.001656	9.4	4 20	
The following sam	ples were analyzed in this batch	0 ⁻ 19 0 ⁻ 19	9091067- 1A 9091067- 4A 9091067- 7A	02	9091067-	03	9091067-			

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 19091067

Project: Holland Board of Public Works

Batch ID: 142726	Instrument ID ICPN	1S4		Method	d: SW60 2	20A					
MBLK	Sample ID: MBLK-14272	6-14272	26			Units: mg/	L	Anal	ysis Date:	9/20/2019 0	2:52 PM
Client ID:		Run I	D: ICPMS	4_190920A		SeqNo: 593	3139	Prep Date: 9	20/2019	DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony		ND	0.0050								
Arsenic		ND	0.0050								
Barium		ND	0.0050								
Beryllium		ND	0.0020								
Boron		ND	0.020								
Cadmium		ND	0.0020								
Calcium		ND	0.50								
Chromium		ND	0.0050								
Cobalt		ND	0.0050								
Lead		ND	0.0050								
Lithium		ND	0.010								
Molybdenum		ND	0.0050								
Selenium		ND	0.0050								

LCS	Sample ID: LCS-142726	-142726				U	nits: mg/l	_	Ana	lysis Date:	9/20/2019 02	2:54 PM
Client ID:		Run ID	: ICPMS4	_190920A		Sec	qNo: 593 3	3140	Prep Date: 9	/20/2019	DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0	.1016	0.0050	0.1		0	102	80-120		0		
Arsenic	0	.1062	0.0050	0.1		0	106	80-120		0		
Barium	0	.1031	0.0050	0.1		0	103	80-120		0		
Beryllium	0	.1036	0.0020	0.1		0	104	80-120		0		
Boron	0	.4717	0.020	0.5		0	94.3	80-120		0		
Cadmium	0	.1098	0.0020	0.1		0	110	80-120		0		
Calcium		10.72	0.50	10		0	107	80-120		0		
Chromium	0	.1051	0.0050	0.1		0	105	80-120		0		
Cobalt	0	.1053	0.0050	0.1		0	105	80-120		0		
Lead		0.104	0.0050	0.1		0	104	80-120		0		
Lithium	0	.1043	0.010	0.1		0	104	80-120		0		
Molybdenum	0	.1058	0.0050	0.1		0	106	80-120		0		
Selenium		0.11	0.0050	0.1		0	110	80-120		0		
Thallium	0	.1019	0.0050	0.1		0	102	80-120		0		

Thallium

ND

0.0050

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 19091067

Project: Holland Board of Public Works

Batch ID: 142726	Instrument ID ICPMS4	Method:	SW6020A
------------------	----------------------	---------	---------

MS	Sample ID: 19091067-02AMS				Units: mg/	L	Analysis	s Date:	9/20/2019 0	3:36 PM
Client ID: MW-4	Run	ID: ICPMS	4_190920A	5	SeqNo: 593 :	3155	Prep Date: 9/20/	Prep Date: 9/20/2019		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.1023	0.0050	0.1	0.000366	102	75-125	0			
Arsenic	0.1121	0.0050	0.1	0.006353	106	75-125	0			
Barium	0.9803	0.0050	0.1	0.891	89.3	75-125	0			0
Beryllium	0.1032	0.0020	0.1	0.000011	103	75-125	0			
Boron	1.525	0.020	0.5	1.046	95.8	75-125	0			
Cadmium	0.1026	0.0020	0.1	0.000107	103	75-125	0			
Calcium	165.3	0.50	10	158	73.2	75-125	0			so
Chromium	0.1011	0.0050	0.1	0.000513	101	75-125	0			
Cobalt	0.1005	0.0050	0.1	0.00237	98.2	75-125	0			
Lead	0.108	0.0050	0.1	0.002767	105	75-125	0			
Lithium	0.1315	0.010	0.1	0.03039	101	75-125	0			
Molybdenum	0.1129	0.0050	0.1	0.005078	108	75-125	0			
Selenium	0.1091	0.0050	0.1	0.000424	109	75-125	0			
Thallium	0.1028	0.0050	0.1	0.000011	103	75-125	0			

MSD	Sample ID: 19091067-02AMSE			l	Jnits: mg/	L	Analysi	s Date: 9	20/2019 0	3:38 PM
Client ID: MW-4	Run	ID: ICPMS	4_190920A	Se	eqNo: 593	3156	Prep Date: 9/20	/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.1027	0.0050	0.1	0.000366	102	75-125	0.1023	0.399	20	
Arsenic	0.1115	0.0050	0.1	0.006353	105	75-125	0.1121	0.492	20	
Barium	0.9899	0.0050	0.1	0.891	98.9	75-125	0.9803	0.974	20	0
Beryllium	0.1018	0.0020	0.1	0.000011	102	75-125	0.1032	1.34	20	
Boron	1.522	0.020	0.5	1.046	95.3	75-125	1.525	0.17	20	
Cadmium	0.1021	0.0020	0.1	0.000107	102	75-125	0.1026	0.557	20	
Calcium	165.6	0.50	10	158	75.9	75-125	165.3	0.165	20	0
Chromium	0.1019	0.0050	0.1	0.000513	101	75-125	0.1011	0.733	20	
Cobalt	0.1006	0.0050	0.1	0.00237	98.3	75-125	0.1005	0.107	20	
Lead	0.1087	0.0050	0.1	0.002767	106	75-125	0.108	0.666	20	
Lithium	0.1325	0.010	0.1	0.03039	102	75-125	0.1315	0.778	20	
Molybdenum	0.1125	0.0050	0.1	0.005078	107	75-125	0.1129	0.313	20	
Selenium	0.1092	0.0050	0.1	0.000424	109	75-125	0.1091	0.0761	20	
Thallium	0.1027	0.0050	0.1	0.000011	103	75-125	0.1028	0.0759	20	

The following samples were analyzed in this batch:

19091067-	19091067-	19091067-	
01A	02A	03A	
19091067-	19091067-	19091067-	
04A	05A	06A	
19091067- 07A			

Client: NTH Consultants, Ltd.

Work Order: 19091067

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: 142634	Instrument ID TDS	8		Metho	d: A2540	C-11						
MBLK	Sample ID: MBLK-1426	34-142634				U	nits: mg/	L	Analys	is Date: \$	9/20/2019 0	1:00 PM
Client ID:		Run ID:	TDS_19	90920B		Sec	No: 593	2272	Prep Date: 9/18	3/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solid	ds	ND	30									
LCS	Sample ID: LCS-142634	4-142634				U	nits: mg/	L	Analys	is Date:	9/20/2019 0	1:00 PM
Client ID:		Run ID:	TDS_19	90920B		Sec	No: 593	2273	Prep Date: 9/18	3/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solid	ds	504	30	495		0	102	85-109	0			
DUP	Sample ID: 19091067-0	2B DUP				U	nits: mg /	L	Analys	is Date:	9/20/2019 0	1:00 PM
Client ID: MW-4		Run ID:	TDS_19	90920B		Sec	No: 593	2276	Prep Date: 9/18	3/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solid	ds	1360	150	0		0	0	0-0	1300	4.5	1 10	
DUP	Sample ID: 19091078-0	8B DUP				U	nits: mg/	L	Analys	is Date:	9/20/2019 0	1:00 PM
Client ID:		Run ID:	TDS_19	90920B		Sec	No: 593	2286	Prep Date: 9/18	3/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solid	ds	1867	50	0		0	0	0-0	1930	3.3	4 10	
The following samp	oles were analyzed in this	s batch:	01 19 04	9091067- IB 9091067-	02	90910		03	091067-			

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 19091067

Project: Holland Board of Public Works

Batch ID: R270850	Instrument ID IC3			Metho	d: E300.0)						
MBLK	Sample ID: CCB/MBLK-	R270850					Units: mg/l	L	Analys	is Date: 9/	18/2019 1	1:52 AN
Client ID:		Run ID:	IC3_19	0918A		S	eqNo: 5927	7709	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Chloride		ND	1.0									
Fluoride		ND	0.10									
Sulfate		ND	1.0									
LCS	Sample ID: LCS-R27085	50					Units: mg/l	L	Analys	is Date: 9/	18/2019 1	2:08 PI
Client ID:		Run ID: I		0918A		S	eqNo: 5927	7710	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Chloride		9.135	1.0	10		0	91.3	90-110	0			
Fluoride		1.903	0.10	2		0	95.2	90-110	0			
Sulfate		9.343	1.0	10		0	93.4	90-110	0			
MS	Sample ID: 19091067-02	2B MS					Units: mg/l	L	Analys	is Date: 9/	18/2019 0	6:36 PI
Client ID: MW-4		Run ID:	IC3_19	0918A		S	eqNo: 5927	7732	Prep Date:		DF: 10	0
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Chloride		1423	100	1000	460).1	96.3	80-120	0			
Fluoride		214.1	10	200		0	107	80-120	0			
Sulfate		966.7	100	1000	6.3	37	96	80-120	0			
MSD	Sample ID: 19091067-02	2B MSD					Units: mg/l	L	Analys	is Date: 9/	18/2019 0	6:55 PI
Client ID: MW-4		Run ID:	IC3_19	0918A		S	eqNo: 5927	7733	Prep Date:		DF: 10	0
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		1428	100	1000	460).1	96.8	80-120	1423	0.351	20	
Fluoride		207.8	10	200		0	104	80-120	214.1	3.01	20	
Sulfate		964.9	100	1000	6.3	37	95.9	80-120	966.7	0.189	20	
The following samp	oles were analyzed in this	batch:	01 19 04	091067- B 091067-	02 19	2B	1067- 1067-	03	091067-			

NTH Consultants, Ltd.

QC BATCH REPORT

Work Order: 19091067

Client:

Project: Holland Board of Public Works

Batch ID: R270910	Instrument ID Titr	ator 1		Method	d: SW90 4	10C							
LCS	Sample ID: LCS-R2709	10-R27091	0			Un	its: s.u.		Ar	alys	is Date: 9/	19/2019 1	11:14 AM
Client ID:		Run ID:	TITRAT	OR 1_1909	19A	Seql	No: 592 9	9871	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value	f	%RPD	RPD Limit	Qual
pH (laboratory)		4.04	0.10	4		0	101	92-108		0			
LCS	Sample ID: LCS-R2709	10-R27091	0			Un	its: s.u.		Ar	alys	is Date: 9/	19/2019 1	11:14 AM
Client ID:		Run ID:	TITRAT	OR 1_1909	19A	Seql	No: 592 9	9909	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value	f	%RPD	RPD Limit	Qual
pH (laboratory)		4.04	0.10	4		0	101	92-108		0			
DUP	Sample ID: 19091196-0	1A DUP				Un	its: s.u.		Ar	alys	is Date: 9/	19/2019 1	11:14 AN
Client ID:		Run ID:	TITRAT	OR 1_1909	19A	Seql	No: 592 9	9873	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value	f	%RPD	RPD Limit	Qual
pH (laboratory)		11.06	0.10	0		0	0	0-0	1	1.01	0.453	5	НННН
Temperature		19.02	0.10	0		0	0		1	9.28	1.36		НННН
DUP	Sample ID: 19091067-0	1B DUP				Un	its: s.u.		Ar	alys	is Date: 9/	19/2019 1	11:14 AN
Client ID: PZ-1		Run ID:	TITRAT	OR 1_1909	19A	Seql	No: 592 9	9911	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value	f	%RPD	RPD Limit	Qual
pH (laboratory)		8.06	0.10	0		0	0	0-0	;	8.08	0.248	5	НННН
Temperature		19.07	0.10	0		0	0	0-0	1	8.63	2.33		НННН
DUP	Sample ID: 19091067-0	2B DUP				Un	its: s.u.		Ar	alys	is Date: 9/	19/2019 1	11:14 AM
Client ID: MW-4		Run ID:	TITRAT	OR 1_1909	19A	Seql	No: 592 9	913	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value	f	%RPD	RPD Limit	Qual
pH (laboratory)		7.03	0.10	0		0	0	0-0		6.99	0.571	5	Н
Temperature		18.92	0.10	0		0	0	0-0		8.93	0.0528		Н
The following samp	oles were analyzed in this	s batch:	01	091067- B 0091067- B	02 19	90910 2B 90910 5B		03	091067-				

NTH Consultants, Ltd. **Client:**

Work Order: 19091067

Holland Board of Public Works **Project:**

QC BATCH REPORT

Batch ID: R270992	Instrument ID WETO	CHEM		Method	: E150.1							
LCS	Sample ID: LCS-R270992	2-R270992				U	nits: s.u.		Ana	lysis Date:	9/20/2019 0	1:00 PM
Client ID:		Run ID: W	/ETCH	EM_190920)G	Sec	No: 5932	2369	Prep Date:		DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.96	0.10	4		0	99	92-108		0		
LCS	Sample ID: LCS-R270992	2-R270992				U	nits: s.u.		Ana	lysis Date:	9/20/2019 0	1:00 PM
Client ID:		Run ID: W	/ETCH	EM_190920)G	Sec	No: 5932	2379	Prep Date:		DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.96	0.10	4		0	99	92-108		0		
LCS	Sample ID: LCS-R270992	2-R270992				U	nits: s.u.		Ana	lysis Date:	9/20/2019 0	1:00 PM
Client ID:		Run ID: W	/ETCH	EM_190920)G	Sec	No: 5932	2380	Prep Date:		DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.96	0.10	4		0	99	92-108		0		
The following samp	oles were analyzed in this I	batch:	19	091067-			_					

07B

Cincinnati, OH +1 513 733 5336

Everett, WA Holland, MI +1 425 356 2600 +1 616 399 6070

Fort Collins, CO

+1 970 490 1511

Chain of Custody Form

Houston, TX +1 281 530 5656 Spring City, PA +1 610 948 4903 South Charleston, WV +1 304 356 3168

Page ____of ___

Middletown, PA +1 717 944 5541 Salt Lake City, UT +1 801 266 7700 York, PA +1 717 505 5280

coc ID: 191768

				AL:	 	Manager:					ALS \	Nork (Order	#: (900	7 IC	$\sqrt{2}$
-	Customer Information		Project Info	ormatic	n				Par	amete	er/Met	hod R	leques	st for /	Analys	sis	
Purchase Order		Project Name	73-16	HOT	P Holl	and YEPVY	Α	Meta	iis inclu	iding H	g						
Work Order		Project Number	73-160	2017-	04		В	Chio	ride, Fl	uoride,	Sulfate	3					
Company Name	NTH Consultants, Ltd.	Bill To Company	Holland Bo	oard of P	ublic Work	5	С	рΗ									
Send Report To	Karen Okonta	Invoice Attn	Accounts f	^o ay a ble		Add	D	TDS							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	######################################	**************************************
Address	41780 Six Mile Road	Address	625 H as tin	ıge	al den de le semannes es es estado de la decedir de la del del de la del del de la del del del del del del del		E	Radi	um 220	3 & 228	*				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
City/State/Zip	Northville, Mi 48168	City/State/Zip	Halland, M	11 49423		// // // // // // // // // // // // //	G										-
Phone	(248) 662-2668	Phone	(616) 355-	1210		Autor	Н	***************************************									and the second of the second o
Fax	(248) 324-5305	Fax					1										
e-Mail Address		e-Mail Address		*******************	***************************************		J							***			
No.	Sample Description	Date 1	ime Ma	atrix	Pres.	# Bottles	Α	В	С	D	E	F	G	Н	ı	J	Hold
1 PZ-1		9-16-19 10:3	OM G	W	2	PEN 5	1	1		\int	$\sqrt{}$						
2 MW-4				W	2	5	1	./	./]/	./	An order					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3 MW-1	oerittieteterentetetetiilistekoilittitiitititiititiitiitiitiitiitiineterentiinitiitiitiitiitiineterenteteete			W	2	5	./	./	./	./	./						,,,
4 MW-2				W	2		./	./	./	./	Ĭ						
2 MS	ssaanen mennen maan saan saan maan maan maan maan maa	9-16-19	1	ξW.	2	Š	./	\	./	./	1				,,,,,,,,		·/////
a MSD			_	W	2	855	7	./	1	./	./						
5 FA-	Field Duplicate			W	2	5	1	7	./	./	7						
& EQB	neid popilion	9-16-19		SW.	2	2000	1	1	./	./	`./						
	Blank	~ 1/ 1/A	— <u> </u>	SW	2	8	J	1/	./	7	7						
10		7-180 1		344				<u> </u>	Y	Y	X				·····		,
Sampler(s) Please F	Print & Sign	Shipment Met	hod	Requi	red Turnar	ound Time: (Check	Box)		\er			R	esults (Due Da	te:	
chie] Std 10 V	JK Days 📗] 5 WH	Days		vK Days		24 Hour	•				
Relinguished by:	2000 Date: 9/16/19	Time: 5:10 PM Recei	ved by:				Notes:										
Relinquished by:	hed by: Date: Time: Receiped by Caboratory):					Cod	oler ID	Cool	er Temp	. QC		: (Chec			al-mM		
Logged by (Laborator)		1710 Chéc	ked by (Laborato	iγ):	2/2	\	3	R2	13	38.		Leve	liismoio Iliistoi9	QC/Ra⊯	Deta	TRR □ TRR	P CheckList P Level IV
Preservative Key: 1-HCl 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOH 5-Na ₂ S ₂ O ₃ 6-NaHSO ₄ 7-Other 8-4°C 9-5035							<u> </u>	6 c		Leve	IV SWS	45/CLP					

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

Client Name: NTH - NORTHVILLE

Sample Receipt Checklist

Date/Time Received:

16-Sep-19 17:10

Work Order:	<u>19091067</u>			R	eceived by	y: <u>KF</u>	<u>RW</u>		
Checklist comp	leted by Diane Shaw		18-Sep-19	Revie	wed by:	Chad Whe	lton		18-Sep-19
Matrices: Carrier name:	eSignature <u>Groundwater</u> <u>Client</u>		Date			eSignature			Date
Shipping contai	ner/cooler in good condition?		Yes	/	No 🗌	Not Present			
Custody seals i	ntact on shipping container/cool	er?	Yes		No 🗌	Not Present	✓		
Custody seals i	ntact on sample bottles?		Yes		No 🗌	Not Present	✓		
Chain of custod	ly present?		Yes		No 🗌				
Chain of custod	ly signed when relinquished and	received?	Yes 🖠	/	No \square				
Chain of custod	ly agrees with sample labels?		Yes 🖠	/	No 🗌				
Samples in pro _l	per container/bottle?		Yes 🕨	•	No 🗌				
Sample contain	ers intact?		Yes 🖠		No 🗌				
Sufficient samp	le volume for indicated test?		Yes 🖠		No 🗌				
All samples rec	eived within holding time?		Yes	/	No 🗌				
Container/Temp	o Blank temperature in complian	ce?	Yes 🖠	/	No 🗌				
Sample(s) rece Temperature(s)	ived on ice? /Thermometer(s):		Yes 3.8/3.8, 3		No 🗆	SR2			
Cooler(s)/Kit(s)	:								
Date/Time sam	ple(s) sent to storage:		9/18/201	9 11:25:0					
	als have zero headspace?		Yes L			No VOA vials sul	omitted	✓	
	eptable upon receipt?		Yes			N/A \square			
pH adjusted? pH adjusted by:			Yes L		No 🗸	N/A			
Login Notes:									
====	======	=====	====:		===	====	==:	====	:====
Client Contacte	d:	Date Contacted:			Person	Contacted:			
Contacted By:		Regarding:							
Comments:									
CorrectiveActio	n:							SRC	Page 1 of 1

Ft. Collins, Colorado LIMS Version: 6.914 Page 1 of 1

Thursday, October 17, 2019

Chad Whelton ALS Environmental 3352 128th Avenue Holland, MI 49424

Re: ALS Workorder: 1909403

Project Name:

Project Number: 19091067

Dear Mr. Whelton:

Seven water samples were received from ALS Environmental, on 9/19/2019. The samples were scheduled for the following analyses:

Radium-226
Radium-228

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely,

ALS Environmental Jeff R. Kujawa Project Manager ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environme	ntal – Fort Collins
7.20	
Accreditation Body	License or Certification Number
AIHA	214884
Alaska (AK)	UST-086
Alaska (AK)	CO01099
Arizona (AZ)	AZ0742
California (CA)	06251CA
Colorado (CO)	CO01099
Florida (FL)	E87914
Idaho (ID)	CO01099
Kansas (KS)	E-10381
Kentucky (KY)	90137
PJ-LA (DoD ELAP/ISO 170250)	95377
Louisiana (LA)	05057
Maryland (MD)	285
Missouri (MO)	175
Nebraska(NE)	NE-OS-24-13
Nevada (NV)	CO000782008A
New York (NY)	12036
North Dakota (ND)	R-057
Oklahoma (OK)	1301
Pennsylvania (PA)	68-03116
Tennessee (TN)	2976
Texas (TX)	T104704241
Utah (UT)	CO01099
Washington (WA)	C1280

1909403

Radium-228:

The samples were analyzed for the presence of ²²⁸Ra by low background gas flow proportional counting of ²²⁸Ac, which is the ingrown progeny of ²²⁸Ra, according to the current revision of SOP 724.

All acceptance criteria were met.

Radium-226:

The samples were prepared and analyzed according to the current revision of SOP 783.

All acceptance criteria were met.

Sample Number(s) Cross-Reference Table

OrderNum: 1909403

Client Name: ALS Environmental

Client Project Name:

Client Project Number: 19091067
Client PO Number: 20-122019335

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
PZ-1	1909403-1		WATER	16-Sep-19	10:30
MW-1	1909403-2		WATER	16-Sep-19	14:05
Field Duplicate	1909403-3		WATER	16-Sep-19	
MW-2	1909403-4		WATER	16-Sep-19	15:30
EQB	1909403-5		WATER	16-Sep-19	
Field Blank	1909403-6		WATER	16-Sep-19	
MW-4	1909403-7		WATER	16-Sep-19	13:30

Date Printed: Thursday, October 17, 2019

Subcontractor:

ALS Environmental, Fort Collins

225 Commerce Dr.

Fort Collins, CO 80524

(800) 443-1511

TEL:

FAX:

Acct #:

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Date: 18-Sep-19

COC ID: <u>11650</u>

Due Date: <u>02-Oct-19</u>

	Salesperson	Brian	Root												
C	Customer Information			Project Informa	ation			Р	aramete	r/Metho	Request	for Anal	ysis		
Purchase Order	!	Pr	oject Name	19091067		Α	Subcontr	acted Ar	alyses (SUBCO	NTRACT)	Kad	Tium	226	1228
Work Order		Pr	oject Number	•	1874-187	В	MS	IMS	0						
Company Name	ALS Group USA, Corp	Bi	l To Compan	y ALS Group	USA, Corp	С	-								
Send Report To	Chad Whelton	Inv	/ Attn	Accounts F	Payable	D									
Address	3352 128th Ave	Ac	ldress	3352 128th	Ave	E									
•	i					F									
City/State/Zip	Holland, Michigan 49424	Ci	ty/State/Zip	Holland, Mi	ichigan 49424	G									
Phone	(616) 399-6070	Pr	one	(616) 399-6	070	Н									
Fax	(616) 399-6185	Fa	IX	(616) 399-6	185	T									
eMail Address	chad.whelton@alsglobal.com	eN	fail CC			J									
ALS Sample ID	Client Sample ID	Matrix	Collect	ion Date 24hr	Bottle	A	В	С	D	E	F	G	Н	1	J
1 19091067-01C	PZ-1	Groundw	ater 16/Se	0/2019 10:30	(3) 1LPHNO3	X		-							
19091067-03C	MW-1	Groundw	ater 16/Se _l	0/2019 14:05	(3) 1LPHNO3	X		0	•	:					
19091067-05C	Field Duplicate	Groundw	ater 16/	Sep/2019	(3) 1LPHNO3	X			*						. ————
19091067-04C	MW-2	Groundw	ater 16/Se	0/2019 15:30	(6) 500PHNO3	X									
19091067-06C	EQB	Wate	r 16/	Sep/2019	(6) 500PHNO3	Х				:		-	:		
19091067-07C	Field Blank	Wate	r 16/	Sep/2019	(6) 500PHNO3	X		· · · · · · · · · · · · · · · · · · ·							
19091067-02C	MW-4	Groundw	ater 16/Se _l	0/2019 13:30	(9) 1LPHNO3	Х	X	•		!					

-Comments:

Please analyze these samples per our instructions and indicated turnaround requirements. Please include all QC with data. The samples do not need to be returned and can be disposed after 30 days.

Relinquished 19	Date/Time 9-18-19 1400	Received by:	Date/Time 9/19/19 0965	Cooler IDs	Report/QC Level Std
Relinquished by:	Date/Time	Received by:	Date/Time		

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

`	Client: AL	-S Hollan	d			Workor	der No:	19094	03		
Proje	ect Manager:	RK				Initials:	EE	Date:	9/20/	19	
Are airb	ills / shipping c	documents p	resent	and/or re	movable?				DROP OFF	YES	NO
Are cust	tody seals on sh	nipping conf	tainers	intact?				l	NONE	YES	NO *
Are cust	tody seals on sa	mple conta	iners in	ntact?					NODE	YES	NO *
Is there	a COC (chain-c	of-custody)	oresent	:?				-		O S	NO *
	OC in agreement requested analy	_	oles rec	ceived? (IDs, dates,	times, # of	samples,	# of conta	niners,	(F)S	NO *
Are sho	rt-hold samples	present?								YES	0
Are all s	samples within	holding time	es for t	he reques	sted analys	ses?				E S	NO *
Were al	l sample contain	ners receive	d intac	t? (not b	roken or le	eaking)				O S	NO *
Is there	sufficient samp	ole for the re	queste	d analyse	s?					K) S	NO *
O. Are all s	samples in the p	proper conta	iners fo	or the req	uested ana	alyses?				Ø)s	NO:*
	aqueous sample	s preserved	correc	tly, if req	uired? (ex	cluding vo	latiles)		N/A	YES	€ 0 *
2. Are all a	aqueous non-pro	eserved sam	ples pl	H 4-9?	·			11 to 200	M	YES	NO *
Are all s > 6 mm	samples requiring (1/4 inch) diam	ng no headspeter? (i.e. s	pace (\integral)	VOC, GR green pea	O, RSK/M)	1EE, radon) free of	bubbles	Ø	YES	NO
Were th	e samples shipp	ped on ice?								YES	(
Were co	oler temperatu	res measure	d at 0.1	I-6.0°C?	IR gun used*:	#1	#3	#4	22	YES	NO
		Coc	oler#:	1	2						
		Temperature	(°C):	AMB	AMB						
	No. of custo	ody seals on c		0	0						-
DOT Survey/ Acceptance		rnal μR/hr rea		12	12						
Information		und μR/hr rea	•	13							
Were exter	nal μR/hr readings ≤	•	-		T acceptance	criteria? FE S	9/NO/N	A (If no. see	Form 008.)		
_	ovide details here 03-4 (all by -5 (all by -6 (all by	Hes) had offes) "		I ph ~		HNO3 a		final pho	_	- - - - - - - - - - - - - -	
	, was the client con	_	NO / N.			ottle ID's v		ab ID's d		ecked b	_
Form 201r (02/11/20	27.xls				#1, VWR SN #3, VWR SN	N 170560549					

*IR Gun #4, Oakton, SN 2372220101-0002

SVCS: PRIORITY OVERNIGHT TRCK: 4892 9282 0326

ORIGIN ID:GRRA (616) 399-6070

ALS ENVIRONMENTAL 3352 128TH AVENUE

HOLLAND, MI 494249263 UNITED STATES US

SAMPLE RECEIVING

SHIP DATE: 18SEP19 ACTWGT: 43.10 LB CAD: 0122071/CAFE3211

BILL THIRD PARTY

FORT COLLINS CO 80524

(970) 490 - 1511 INU: PO:

DEP T:

2 of 2 Mstr# 4892 9282 0315

19 SEP 10:30A PRIORITY OVERNIGHT

0201

80524

FedEx Express

Ref: Dep: Date: 18Sep19 Wgt: 37.55 LBS

SHIPPING: HANDL ING gen At :

1 K.

0.00

0.00

0.00

0.00

Svcs: PHIORITY OVERNIGHT | Master 4892 9282 0315 | TRCK: 4892 9282 0315

(616) 399-6070 ORIGIN ID: GRRA

ALS ENVIRONMENTAL 3352 128TH AVENUE

HOLLAND, MI 494249263 UNITED STATES US

SAMPLE RECEIVING **ALS ENVIRONMENTAL** 225 COMMERCE DR

SHIF DATE: 18SEP19 ACTHGT: 37.55 LB CAD: 0122071/CAFE3211

BILL THIRD PARTY

FORT COLLINS CO 80524

(970) 490-1611 INU: PO:

FedEx

1 of 2 TRK# ## MASTER ##

FTCA

19 SEP 10:30A

80524 DEN co-us

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 17-Oct-19

 Project:
 19091067
 Work Order:
 1909403

 Sample ID:
 PZ-1
 Lab ID:
 1909403-1

 Legal Location:
 Matrix:
 WATER

Collection Date: 9/16/2019 10:30 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emana	tion - Method 903.1	SOI	P 783	Prep	Date: 10/9/2019	PrepBy: JXH
Ra-226	ND (+/- 0.34)	U	0.48	pCi/l	NA	10/15/2019 13:13
Carr: BARIUM	88		40-110	%REC	DL = NA	10/15/2019 13:13
Radium-228 Analysis by GFP0	C	SOI	P 724	Prep	Date: 10/7/2019	PrepBy: RGS
Ra-228	ND (+/- 0.38)	U	0.73	pCi/l	NA	10/14/2019 07:48
Carr: BARIUM	96		40-110	%REC	DL = NA	10/14/2019 07:48

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 17-Oct-19

 Project:
 19091067
 Work Order:
 1909403

 Sample ID:
 MW-1
 Lab ID:
 1909403-2

 Legal Location:
 Matrix:
 WATER

Collection Date: 9/16/2019 14:05 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanati	on - Method 903.1	SOP	783	Prep	Date: 10/9/2019	PrepBy: JXH
Ra-226	0.61 (+/- 0.4)		0.46	pCi/l	NA	10/15/2019 13:45
Carr: BARIUM	92.8		40-110	%REC	DL = NA	10/15/2019 13:45
Radium-228 Analysis by GFPC		SOP	724	Prep	Date: 10/7/2019	PrepBy: RGS
Ra-228	2.05 (+/- 0.65)		0.77	pCi/l	NA	10/14/2019 07:48
Carr: BARIUM	95.7		40-110	%REC	DL = NA	10/14/2019 07:48

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 17-Oct-19

Project:19091067Work Order:1909403Sample ID:Field DuplicateLab ID:1909403-3Legal Location:Matrix:WATER

Collection Date: 9/16/2019 Percent Moisture:

Analyses	Result	Report Result Qual Limit Units		Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation	- Method 903.1	SOP	783	Prep	Date: 10/9/2019	PrepBy: JXH
Ra-226	0.78 (+/- 0.48)		0.56	pCi/l	NA	10/15/2019 13:45
Carr: BARIUM	93.1		40-110	%REC	DL = NA	10/15/2019 13:45
Radium-228 Analysis by GFPC		SOP	724	Prep	Date: 10/7/2019	PrepBy: RGS
Ra-228	2.21 (+/- 0.68)		0.77	pCi/l	NA	10/14/2019 07:48
Carr: BARIUM	96.8		40-110	%REC	DL = NA	10/14/2019 07:48

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 17-Oct-19

 Project:
 19091067
 Work Order:
 1909403

 Sample ID:
 MW-2
 Lab ID:
 1909403-4

 Legal Location:
 Matrix:
 WATER

Collection Date: 9/16/2019 15:30 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanati	on - Method 903.1	SOF	783	Prep	Date: 10/9/2019	PrepBy: JXH
Ra-226	ND (+/- 0.46)	U	0.86	pCi/l	NA	10/15/2019 13:45
Carr: BARIUM	96.4		40-110	%REC	DL = NA	10/15/2019 13:45
Radium-228 Analysis by GFPC		SOF	724	Prep	Date: 10/7/2019	PrepBy: RGS
Ra-228	1.74 (+/- 0.57)		0.72	pCi/l	NA	10/14/2019 07:48
Carr: BARIUM	97.5		40-110	%REC	DL = NA	10/14/2019 07:48

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 17-Oct-19

 Project:
 19091067
 Work Order:
 1909403

 Sample ID:
 EQB
 Lab ID:
 1909403-5

 Legal Location:
 Matrix:
 WATER

Collection Date: 9/16/2019 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation	- Method 903.1	SO	P 783	Prep	Date: 10/9/2019	PrepBy: JXH
Ra-226	ND (+/- 0.23)	U	0.35	pCi/l	NA	10/15/2019 13:45
Carr: BARIUM	95.8		40-110	%REC	DL = NA	10/15/2019 13:45
Radium-228 Analysis by GFPC		SO	P 724	Prep	Date: 10/7/2019	PrepBy: RGS
Ra-228	0.96 (+/- 0.44)	Y1	0.73	pCi/l	NA	10/14/2019 07:48
Carr: BARIUM	101	Y1	40-110	%REC	DI = NA	10/14/2019 07:48

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 17-Oct-19

Project:19091067Work Order:1909403Sample ID:Field BlankLab ID:1909403-6Legal Location:Matrix:WATER

Collection Date: 9/16/2019 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanatio	n - Method 903.1	SOI	783	Prep	Date: 10/9/2019	PrepBy: JXH
Ra-226	ND (+/- 0.23)	U	0.48	pCi/l	NA	10/15/2019 13:45
Carr: BARIUM	95.9		40-110	%REC	DL = NA	10/15/2019 13:45
Radium-228 Analysis by GFPC		SOI	724	Prep	Date: 10/7/2019	PrepBy: RGS
Ra-228	0.83 (+/- 0.41)		0.72	pCi/l	NA	10/14/2019 07:48
Carr: BARIUM	98.5		40-110	%REC	DI = NA	10/14/2019 07:48

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 17-Oct-19

 Project:
 19091067
 Work Order:
 1909403

 Sample ID:
 MW-4
 Lab ID:
 1909403-7

Sample ID: MW-4 Lab ID: 1909403-7
Legal Location: Matrix: WATER

Collection Date: 9/16/2019 13:30 Percent Moisture:

Report Dilution
Analyses Result Qual Limit Units Factor Date Analyzed

Explanation of Qualifiers

Radiochemistry:

- "Report Limit" is the MDC

U or ND - Result is less than the sample specific MDC.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

W - DER is greater than Warning Limit of 1.42

* - Aliquot Basis is 'As Received' while the Report Basis is 'Dry Weight'.

- Aliquot Basis is 'Dry Weight' while the Report Basis is 'As Received'.

G - Sample density differs by more than 15% of LCS density.

D - DER is greater than Control Limit

M - Requested MDC not met.

M3 - The requested MDC was not met, but the reported activity is greater than the reported MDC.

L - LCS Recovery below lower control limit.

H - LCS Recovery above upper control limit.

P - LCS, Matrix Spike Recovery within control limits.

N - Matrix Spike Recovery outside control limits

NC - Not Calculated for duplicate results less than 5 times MDC

B - Analyte concentration greater than MDC.

B3 - Analyte concentration greater than MDC but less than Requested

MDC.

Inorganics:

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

U or ND - Indicates that the compound was analyzed for but not detected.

E - The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.

M - Duplicate injection precision was not met

N - Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.

Z - Spiked recovery not within control limits. An explanatory note may be included in the narrative.

* - Duplicate analysis (relative percent difference) not within control limits.

S - SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

U or ND - Indicates that the compound was analyzed for but not detected.

- B Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.
- E Analyte concentration exceeds the upper level of the calibration range.
- J Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).
- A A tentatively identified compound is a suspected aldol-condensation product.
- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.
- Z This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products:
- gasoline
- JP-8 - diesel
- mineral spirits
- motor oil
- Stoddard solvent
- bunker C

Client: ALS Environmental

Work Order: 1909403 **Project:** 19091067

Date: 10/17/2019 8:39

QC BATCH REPORT

Batch ID: I	RE191009-1-1	Instrument ID Alp	oha Scin		Method: I	Radium-226	by Rado	on Emanation				
DUP	Sample ID: 1909403-	7			Į	Jnits: pCi/l		Analys	is Date:	10/15/20	019 13:45	5
Client ID:	MW-4	Run II	D: RE191009 -	1A		Р			/2019	DF:		
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		ND	0.45						0.48	3 0.2	2.1	U
Carr: BAR	IUM	16640		18210		91.4	40-110		16230			
LCS	S Sample ID: RE191009-1 Units: pCi/l Analysis Date: 10/15/2019)19 14:26	5			
Client ID: Run ID: RE191009-1A						I	Prep Date: 10/9	/2019	DF:			
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		55 (+/- 14)	1	46.47		118	67-120					Р
Carr: BAR	IUM	16380		17330		94.5	40-110					
МВ	Sample ID: RE191009	9-1			l	Jnits: pCi/l		Analys	is Date:	10/15/20	019 14:26	3
Client ID:		Run II	D: RE191009 -	1A			ı	Prep Date: 10/9	/2019	DF:	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		ND	0.54									U
Carr: BAR	Carr: BARIUM 16980			17330		98	40-110					
The following samples were analyzed in this batch:		1909403-1 1909403-4 1909403-7		1909403-2 1909403-5		1909403-3 1909403-6						

Client: ALS Environmental

Work Order: 1909403 **Project:** 19091067

QC BATCH REPORT

Batch ID: F	RA191007-1-2 li	nstrument ID LB	4100-C		Method: Ra	adium-228	3 Analysis	by GFPC				
DUP	Sample ID: 1909403-7				Ur	nits: pCi/l		Analys	is Date: 1	0/14/20	19 07:48	3
Client ID: N	Client ID: MW-4 Rui		D: RA191007 -	1A			Pi	rep Date: 10/7	/2019	DF:	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-228		2.18 (+/- 0.67)	0.77						1.78	0.4	2.1	
Carr: BARI	IUM	30990		33000		93.9	40-110		32030			
LCS	Sample ID: RA191007-1				Ur	nits: pCi/l		Analys	is Date: 1	0/14/20	19 07:48	3
Client ID:		Run ID: RA191007-1A Prep Date: 10				rep Date: 10/7	/7/2019 DF: NA					
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-228		15.2 (+/- 3.6)	0.7	13.72		111	70-130					Р
Carr: BARI	IUM	31880		32190		99	40-110					
MB	Sample ID: RA191007-1				Ur	nits: pCi/l		Analys	is Date: 1	0/14/20	19 07:48	3
Client ID:		Run II	D: RA191007 -	1A			Pi	rep Date: 10/7	/2019	DF:	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-228		ND	0.77									U
Carr: BARI	IUM	31790		32170		98.8	40-110					
The follow	wing samples were analyzed	d in this batch:	19094 19094 19094	103-4	190940 190940	-		403-3 403-6				

QC Page: 2 of 2

Low-Flow Test Report:

Test Date / Time: 9/16/2019 7:57:26 AM **Project:** JDY PP Holland BPW Q3 2019

Operator Name: Chloe Palajac

Location Name: Pz1
Well Diameter: 2 in

Initial Depth to Water: 9.25 ft

Estimated Total Volume Pumped:

9000 ml

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min Final Draw Down: 0.92 ft Instrument Used: Aqua TROLL 600

Serial Number: 464768

Test Notes:

Low-Flow Readings:

Date Time (MST)	Elapsed Time	рН	Temperature	Specific Conductivity	Turbidity	Depth To Water	Flow
		+/- 0.1	+/- 0.2	+/- 3	+/- 10		
9/16/2019 7:57 AM	00:00	7.89 pH	23.38 °C	0.00 mS/cm	11.17 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:00 AM	03:00	7.89 pH	22.25 °C	0.00 mS/cm	9.21 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:03 AM	06:00	7.89 pH	21.70 °C	0.00 mS/cm	6.54 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:06 AM	09:00	7.88 pH	21.49 °C	0.00 mS/cm	5.04 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:09 AM	12:00	7.86 pH	21.37 °C	0.00 mS/cm	4.25 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:12 AM	15:00	7.84 pH	21.10 °C	0.00 mS/cm	4.32 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:15 AM	18:00	7.80 pH	20.82 °C	0.00 mS/cm	3.77 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:18 AM	21:00	7.79 pH	20.92 °C	0.00 mS/cm	2.53 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:21 AM	24:00	7.77 pH	20.82 °C	0.00 mS/cm	1.91 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:24 AM	27:00	7.75 pH	20.61 °C	0.00 mS/cm	3.21 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:27 AM	30:00	7.77 pH	20.57 °C	0.00 mS/cm	1.20 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:30 AM	33:00	7.79 pH	21.41 °C	0.00 mS/cm	1.62 NTU	9.25 ft	250.00 ml/min
9/16/2019 8:33 AM	36:00	7.77 pH	22.10 °C	0.00 mS/cm	2.66 NTU	9.25 ft	250.00 ml/min

Samples

Sample ID:	Description:	
Sample ID:	Description:	

GROUNDWATER SAMPLE COLLECTION LOG

GENERAL INFORMATION												
Project Name: Holland BPW – J	PP	Date:		09/16/2	2019							
					onnel: P			. Abbie		X		
Site Location: Holland, MI												
Well ID: PZ-1												
				-								
Sample ID (if different than Well	ID):											
				Top of Ca	sing (ft.):_	592.	91					
			PURGI	NG DATA								
Time: Start: Finish:												
Purging Volume			Casing Dian	neter (1n)	Casing	/ <mark>ol. (Gal.</mark> / 0.04	Ft.)	3 Casın	g Vol. (0.12	(Gal./Ft.)		
Total Well Depth (ft. from TOC)	= 9.25		1.5			0.10	-		0.30			
Depth to Water (ft. from TOC) =		-	2			0.16			0.48			
Height of Water in Well (ft.) = 4			3			0.36			1.08			
One Well Volume (gallons) = 0.			4			0.63			1.89			
Gallons Purged:	0 2			Duraina	d Samplin			Davistalt				
					•				IC			
Well Volumes Purged:					ate (g.p.m.	151			00 1/			
Was Well Purged Dry? Yes ~	No ~				erage low :							
		FIELI	MONITOR									
Time	10:00	10:03	10:06	10:09 10:15 10:18 10:21								
Accum. Volume Purged (gal)												
Drawdown (ft)												
pH	7.89	7.89	7.88/	7.86	7.8	7.79	7.77					
Temperature (C)	22.25	21.7	21.49	21.37	20.82	20.92	20.8	2				
Conductivity (mS/cm)												
ORP (mV)												
Dissolved Oxygen (mg/L)												
Turbidity (NTU)	9.21	6.574	5.09	4.25	3.77	2.55	1.91					
Odor												
Appearance and/or Color	Slight	T							-			
Appearance and/or Color	yellow											
		-	SAMPL:	ING DATA	· ·							
Time: Start: 9.57	Finish:	10:30		Pump Rat	e (g.p.m.):_							
Sample Collection Device:	Peristalti	c										
Weather Conditions: Air Tempera	ture (F):_		Wind	Speed/Dire	ction:	O	ther:					
Samples Collected On chain of Cus	stody No:_		Analyt	ical Labora	tory:				_			
Other Notes:												

Low-Flow Test Report:

Test Date / Time: 9/16/2019 11:40:06 AM **Project:** JDY PP Holland BPW Q3 2019 (5)

Operator Name: Chloe Palajac

Location Name: Mw1 Estimated Total Volume Pumped:

6000 ml

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min Instrument Used: Aqua TROLL 600

Serial Number: 464768

Test Notes:

Low-Flow Readings:

Date Time (MST)	Elapsed Time	pH	Temperature	Specific Conductivity	Turbidity	Flow
		+/- 0.1	+/- 0.2	+/- 3	+/- 10	
9/16/2019 11:40 AM	00:00	7.01 pH	21.53 °C	0.00 mS/cm	232.86 NTU	250.00 ml/min
9/16/2019 11:43 AM	03:00	6.98 pH	21.16 °C	0.00 mS/cm	332.99 NTU	250.00 ml/min
9/16/2019 11:46 AM	06:00	6.98 pH	20.90 °C	0.00 mS/cm	369.92 NTU	250.00 ml/min
9/16/2019 11:49 AM	09:00	6.97 pH	20.78 °C	0.00 mS/cm	374.82 NTU	250.00 ml/min
9/16/2019 11:52 AM	12:00	6.97 pH	20.99 °C	0.00 mS/cm	400.85 NTU	250.00 ml/min
9/16/2019 11:55 AM	15:00	6.96 pH	21.39 °C	0.00 mS/cm	397.26 NTU	250.00 ml/min
9/16/2019 11:58 AM	18:00	6.95 pH	21.71 °C	0.00 mS/cm	408.91 NTU	250.00 ml/min
9/16/2019 12:01 PM	21:00	6.94 pH	21.83 °C	0.00 mS/cm	401.78 NTU	250.00 ml/min
9/16/2019 12:04 PM	24:00	6.94 pH	21.90 °C	0.00 mS/cm	421.07 NTU	250.00 ml/min

Samples

Sample ID:	Description:

Created using VuSitu from In-Situ, Inc.

GROUNDWATER SAMPLE COLLECTION LOG

		G	ENERA	J	NFORMAT	TION							
Project Name: Holland BPW - J	oung 1	PP		Date:9/16/19									
Project #: 73-160017 -04				_ ;	Field Personnel: Phil, Keith, Chloe, Abbie								
Site Location: Holland, MI					Well Const.: Sch 40 PVC								
Well ID: MW-1				Casing Diameter: 2.0"									
Sample ID (if different than Well	יייי:			Top of Casing (ft.): 588.53									
						sing (ft.):_	588.	53					
					NG DATA								
Time: Start:			Fin			Cosing V	ol. (Gal./	F4 \ 2	Casing Vol.	(Cal /Et)			
Purging Volume			Casing D	1	meter (in)		0.04	Ft.) 3	0.12				
Total Well Depth (ft. from TOC)	= 5.49	-		1.5	5		0.10	_	0.30)			
Depth to Water (ft. from TOC) =				2			0.16		0.48				
Height of Water in Well (ft.)				3			0.36		1.08				
One Well Volume (gallons)				4			0.63		1.89)			
Gallons Purged: Purging and Sampling Device: Peritaltic													
Well Volumes Purged: Purging Rate (g.p.m.) 300 ml/min													
Was Well Purged Dry? Yes ~	No ~								.m. (500 mL				
2-inch well typically results in a drawdown of 0.5 ft or less FIELD MONITORING PARAMETERS													
Time	1:43	1:46	1:4)	1:52	1:55	1:58	2:01	2:04				
Accum. Volume Purged (gal)													
Drawdown (ft)	600	100			6.00			1.04	5.5.1				
рН	6.98	6.98			6.97	6.96	6.95	6.94	6.94				
Temperature (C)	21.16	20.90	20.	/8	20.99	21.39	21.71	21.53	21.9				
Conductivity (mS/cm)													
ORP (mV)													
Dissolved Oxygen (mg/L)													
Turbidity (NTU)	332.99	369.9	92 379	.82	400.85	397.26	4018.9	401.78	421.07				
Odor													
Appearance and/or Color	Clear												
			SAM	PL	ING DATA			1.					
Time: Start: 1:40	Finish:	2:04			Pump Rate	e (g.p.m.):_		_					
Sample Collection Device:Per	istaltic			_									
Weather Conditions: Air Temperature (F): Wind Speed/Direction: Other:													
Samples Collected On chain of Custody No: Analytical Laboratory:													
Other Notes:													
Field duplicate													

Low-Flow Test Report:

Test Date / Time: 9/16/2019 1:07:13 PM **Project:** JDY PP Holland BPW Q3 2019 (6)

Operator Name: Chloe Palajac

Location Name: Mw2 Estimated Total Volume Pumped:

7200 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min Instrument Used: Aqua TROLL 600

Serial Number: 464768

Test Notes:

Low-Flow Readings:

Date Time (MST)	Elapsed Time	рН	Temperature	Specific Conductivity	Turbidity	Flow	
		+/- 0.1	+/- 0.2	+/- 3	+/- 10		
9/16/2019 1:07 PM	00:00	7.04 pH	23.99 °C	0.00 mS/cm	3.87 NTU	300.00 ml/min	
9/16/2019 1:10 PM	03:00	7.05 pH	23.13 °C	0.00 mS/cm	11.97 NTU	300.00 ml/min	
9/16/2019 1:13 PM	06:00	7.04 pH	22.62 °C	0.00 mS/cm	7.94 NTU	300.00 ml/min	
9/16/2019 1:16 PM	09:00	7.03 pH	22.25 °C	0.00 mS/cm	4.00 NTU	300.00 ml/min	
9/16/2019 1:19 PM	12:00	7.02 pH	21.95 °C	0.00 mS/cm	13.45 NTU	300.00 ml/min	
9/16/2019 1:22 PM	15:00	7.00 pH	21.62 °C	0.00 mS/cm	13.84 NTU	300.00 ml/min	
9/16/2019 1:25 PM	18:00	6.98 pH	21.30 °C	0.00 mS/cm	20.62 NTU	300.00 ml/min	
9/16/2019 1:28 PM	21:00	6.95 pH	21.26 °C	0.00 mS/cm	24.75 NTU	300.00 ml/min	
9/16/2019 1:31 PM	24:00	6.93 pH	21.18 °C	0.00 mS/cm	32,47 NTU	300.00 ml/min	

Samples

Sample ID:	Description:

Created using VuSitu from In-Situ, Inc.

GROUNDWATER SAMPLE COLLECTION LOG

		G	ENERAL I	NFORMA'	ΓΙΟΝ					
Project Name: Holland BPW - James DeYoung PP				Date:9/16/19						
Project #:73-160017				Field Personnel: Phil, Keith, Chloe, Abbie						
Site Location: Holland, MI				Well Const.: Sch 40 PVC						
Well ID: MW-2				Casing Diameter: 2.0"						
Sample ID (if different than Well	ID).			Screened Interval (ft. from TOC): 8.0'-13.0 (14.0'-19.0')						
Sample 1D (if different than wen 1D).				Top of Casing (ft.): 585.49						
PURGING DATA										
			Casing Dia		Casing	Vol. (Gal./Ft.)		3 Casing Vol. (Gal./Ft.)		
Purging Volume			1			0.04		0.12		
Total Well Depth (ft. from TOC)	= 2.87		1.5		0.10			0.30		
Depth to Water (ft. from TOC) =16.16			2		0.16			0.48		
Height of Water in Well (ft.) =13.29			3		0.36			1.08		
One Well Volume (gallons) =2.13			4		0.63			1.89		
Gallons Purged:				Purging and Sampling Device: Peritaltic						
Well Volumes Purged: Purging Rate (g.p.m.) 300 ml/min										
Was Well Purged Dry? Yes ~ No ~ Note: Average low flow rate of 0.13 g.p.m. (500 mL/min) on a										
2-inch well typically results in a drawdown of 0.5 ft or less FIELD MONITORING PARAMETERS										
Time	3:07	3:10	3:13	3:16	3:19	3:22	3:25	3:28	3:31	
Accum. Volume Purged (gal)										
Drawdown (ft)										
pН	7.04	7.05	7.04	7.03	7.02	7.0	6.98	6.95	6.93	
Temperature (C)	23.99	23.13	3 22.62	22.25	21.95	21.62	21.3	21.26	21.18	
Conductivity (mS/cm)										
ORP (mV)										
Dissolved Oxygen (mg/L)										
Turbidity (NTU)	3.87	11.9	7 7.94	4.0	13.45	13.84	20.62	24.75	32.47	
Odor										
Appearance and/or Color	Clear									
SAMPLING DATA										
Time: Start: 3:04 Finish: 3:31 Pump Rate (g.p.m.):										
Sample Collection Device: Peristaltic										
Weather Conditions: Air Temperature (F): Wind Speed/Direction: Other:										
Samples Collected On chain of Custody No: Analytical Laboratory:										
Other Notes:										

GROUNDWATER SAMPLE COLLECTION LOG

GENERAL INFORMATION								
Project Name: Holland BPW – James DeYoun								
		Date: 09/16/2019						
Project #: 73-160017 -04								
Site Location: Holland, MI		: Sch 40 PVC						
Well ID: MW-3	Casing Dia	meter: 2.0"						
Sample ID (if different than Well ID):	Screened In	Screened Interval (ft. from TOC): 10.0'-15.0- bgs (13.0'-18.0')						
•		Top of Casing (ft.): 585.30						
PURGING DATA								
Time: Start: Finish:								
Purging Volume	Casing Diameter (in)	Casing Vol. (Gal./Ft.)	3 Casing Vol. (Gal./Ft.)					
	1	0.04	0.12					
Total Well Depth (ft. from TOC)	1.5	0.10	0.30					
Depth to Water (ft. from TOC) =	2	0.16	0.48					
Height of Water in Well (ft.) =	3	0.36	1.08					
One Well Volume (gallons) =	4	0.63	1.89					
Gallons Purged:	Purging and	Purging and Sampling Device:						
Well Volumes Purged:	Purging Ra	te (g.p.m.)						
Was Well Purged Dry? Yes ~ No ~ Note: Average low flow rate of 0.13 g.p.m. (500 mL/min) on a 2-inch well typically results in a drawdown of 0.5 ft or less								
FIE	ELD MONITORING PARA	METERS						
Time								
Accum. Volume Purged (gal)								
Drawdown (ft)								
рН								
Temperature (C)								
Conductivity (mS/cm)								
ORP (mV)								
Dissolved Oxygen (mg/L)								
Turbidity (NTU)								
Odor								
Appearance and/or Color								
SAMPLING DATA								
Time: Start:Finish: Pump Rate (g.p.m.):								
Sample Collection Device:								
Weather Conditions: Air Temperature (F): Wind Speed/Direction: Other:								
Samples Collected On chain of Custody No: Analytical Laboratory:								

Other Notes: The well was inaccessible due to high water level in the surrounding area: surrounded by over 1 foot of water on all sides.

28-Jan-2020

Karen Okonta NTH Consultants, Ltd. 41780 Six Mile Road Northville, MI 48168

Re: Holland Board of Public Works Work Order: 19121443

Dear Karen,

ALS Environmental received 8 samples on 19-Dec-2019 08:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 38.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 28-Jan-20

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order Sample Summary

Work Order: 19121443

Collection Date	Date Received	Hold
12/18/2019 11:50	12/19/2019 08:0	$_{0}$

Lab Samp ID	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	<u>Hold</u>
19121443-01	PZ-1	Groundwater		12/18/2019 11:50	12/19/2019 08:00	
19121443-02	MW-4	Groundwater		12/18/2019 13:45	12/19/2019 08:00	
19121443-03	Field Blank (FB)	Groundwater		12/18/2019 13:45	12/19/2019 08:00	
19121443-04	MW-1	Groundwater		12/18/2019 15:40	12/19/2019 08:00	
19121443-05	MW-2	Groundwater		12/18/2019 16:06	12/19/2019 08:00	
19121443-06	MW-3	Groundwater		12/18/2019 16:45	12/19/2019 08:00	
19121443-07	Equipment Blank (EQB)	Water		12/18/2019 17:30	12/19/2019 08:00	
19121443-08	Field Duplicate (FD)	Groundwater		12/18/2019	12/19/2019 08:00	

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Case Narrative

Work Order: 19121443

Samples for the above noted Work Order were received on 12/19/2019. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Metals:

No other deviations or anomalies were noted.

Wet Chemistry:

Batch R278188, Method PH_4500_W, Sample LCS-R278188: Sample was processed outside of holding time for pH, as the analysis is a field test and holding time is defined as 15 minutes.

Batch R279864, Method IC_300.0_WW, Sample 19121443-05B: The reporting limits for Fluoride and Sulfate are elevated due to dilution for high concentrations of non-target analytes.

Batch R279864, Method IC_300.0_WW, Samples 19121443-06B -08B: The reporting limits for Fluoride are elevated due to dilution for high concentrations of non-target analytes.

Radium analysis performed by ALS Fort Collins laboratory.

Standard Units

s.u.

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
O	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Units Reported	Description
°C	Degrees Celcius
as noted	
mg/L	Milligrams per Liter

Date: 28-Jan-20

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19121443

Sample ID: PZ-1 **Lab ID:** 19121443-01

Collection Date: 12/18/2019 11:50 AM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 1/2/20 11:01	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/2/2020 02:49 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 12/31/19 09:33	Analyst: DSC
Antimony	ND		0.0050	mg/L	1	12/31/2019 04:51 PM
Arsenic	0.032		0.0050	mg/L	1	12/31/2019 04:51 PM
Barium	0.062		0.0050	mg/L	1	12/31/2019 04:51 PM
Beryllium	ND		0.0020	mg/L	1	12/31/2019 04:51 PM
Boron	0.38		0.020	mg/L	1	12/31/2019 04:51 PM
Cadmium	ND		0.0020	mg/L	1	12/31/2019 04:51 PM
Calcium	45		0.50	mg/L	1	12/31/2019 04:51 PM
Chromium	0.0082		0.0050	mg/L	1	12/31/2019 04:51 PM
Cobalt	ND		0.0050	mg/L	1	12/31/2019 04:51 PM
Lead	0.018		0.0050	mg/L	1	12/31/2019 04:51 PM
Lithium	ND		0.010	mg/L	1	12/31/2019 04:51 PM
Molybdenum	0.068		0.0050	mg/L	1	12/31/2019 04:51 PM
Selenium	ND		0.0050	mg/L	1	12/31/2019 04:51 PM
Thallium	ND		0.0020	mg/L	1	12/31/2019 04:51 PM
ANIONS BY ION CHROMATOGRAPH	Y		E300.0			Analyst: JDR
Chloride	210		20	mg/L	20	12/31/2019 01:10 PM
Fluoride	ND		1.0	mg/L	1	12/31/2019 12:51 PM
Sulfate	29		10	mg/L	5	1/2/2020 01:27 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: QTN
pH (laboratory)	8.67	Н	0.100	s.u.	1	12/20/2019 03:28 PM
Temperature	18.3	Н	0.100	°C	1	12/20/2019 03:28 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/24/19 09:37	Analyst: ERW
Total Dissolved Solids	1,500		30	mg/L	1	12/26/2019 01:11 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBCONTRACT as note			Analyst: ALS 1/16/2020

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19121443

Sample ID: Field Blank (FB) Lab ID: 19121443-03

Collection Date: 12/18/2019 01:45 PM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Report Result Qual Limit Units		Units	Dilution Factor	Date Analyzed	
MERCURY BY CVAA			SW747	0A	Prep: SW7470 1/2/20 11:01	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/2/2020 03:08 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 12/31/19 09:33	Analyst: DSC
Antimony	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Arsenic	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Barium	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Beryllium	ND		0.0020	mg/L	1	12/31/2019 05:01 PM
Boron	ND		0.020	mg/L	1	12/31/2019 05:01 PM
Cadmium	ND		0.0020	mg/L	1	12/31/2019 05:01 PM
Calcium	ND		0.50	mg/L	1	12/31/2019 05:01 PM
Chromium	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Cobalt	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Lead	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Lithium	ND		0.010	mg/L	1	12/31/2019 05:01 PM
Molybdenum	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Selenium	ND		0.0050	mg/L	1	12/31/2019 05:01 PM
Thallium	ND		0.0020	mg/L	1	12/31/2019 05:01 PM
ANIONS BY ION CHROMATOGRAPHY			E300.0			Analyst: JDR
Chloride	ND		1.0	mg/L	1	12/31/2019 02:07 PM
Fluoride	ND		1.0	mg/L	1	12/31/2019 02:07 PM
Sulfate	ND		2.0	mg/L	1	12/31/2019 02:07 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: QTN
pH (laboratory)	6.80	Н	0.100	s.u.	1	12/20/2019 03:28 PM
Temperature	18.5	Н	0.100	°C	1	12/20/2019 03:28 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/24/19 09:37	Analyst: ERW
Total Dissolved Solids	ND		30	mg/L	1	12/26/2019 01:11 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses S			SUBC	ONTRAC as no		Analyst: ALS 1/16/2020

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19121443

Sample ID: MW-1 **Lab ID:** 19121443-04

Collection Date: 12/18/2019 03:40 PM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Report Result Qual Limit Units		Dilution Factor	Date Analyzed	
MERCURY BY CVAA			SW747	0A	Prep: SW7470 1/2/20 11:01	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/2/2020 03:10 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 12/31/19 09:33	Analyst: DSC
Antimony	ND		0.0050	mg/L	1	12/31/2019 05:03 PM
Arsenic	0.026		0.0050	mg/L	1	12/31/2019 05:03 PM
Barium	0.27		0.0050	mg/L	1	12/31/2019 05:03 PM
Beryllium	ND		0.0020	mg/L	1	12/31/2019 05:03 PM
Boron	1.2		0.020	mg/L	1	12/31/2019 05:03 PM
Cadmium	ND		0.0020	mg/L	1	12/31/2019 05:03 PM
Calcium	110		0.50	mg/L	1	12/31/2019 05:03 PM
Chromium	ND		0.0050	mg/L	1	12/31/2019 05:03 PM
Cobalt	ND		0.0050	mg/L	1	12/31/2019 05:03 PM
Lead	ND		0.0050	mg/L	1	12/31/2019 05:03 PM
Lithium	0.12		0.010	mg/L	1	12/31/2019 05:03 PM
Molybdenum	ND		0.0050	mg/L	1	12/31/2019 05:03 PM
Selenium	ND		0.0050	mg/L	1	12/31/2019 05:03 PM
Thallium	ND		0.0020	mg/L	1	12/31/2019 05:03 PM
ANIONS BY ION CHROMATOGRAPHY	′		E300.0			Analyst: JDR
Chloride	200		20	mg/L	20	12/31/2019 03:05 PM
Fluoride	ND		1.0	mg/L	1	12/31/2019 02:27 PM
Sulfate	26		10	mg/L	5	12/31/2019 02:46 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: QTN
pH (laboratory)	7.10	Н	0.100	s.u.	1	12/20/2019 03:28 PM
Temperature	18.1	Н	0.100	°C	1	12/20/2019 03:28 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/24/19 10:49	Analyst: ERW
Total Dissolved Solids	900		30	mg/L	1	12/26/2019 01:17 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBCONTRACT as not			Analyst: ALS 1/16/2020

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19121443

Sample ID: MW-2 **Lab ID:** 19121443-05

Collection Date: 12/18/2019 04:06 PM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Report Result Qual Limit Units		Units	Dilution Factor	Date Analyzed	
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 1/2/20 11:01	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/2/2020 03:13 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 12/31/19 09:33	Analyst: DSC
Antimony	ND		0.0050	mg/L	1	12/31/2019 05:05 PM
Arsenic	ND		0.0050	mg/L	1	12/31/2019 05:05 PM
Barium	0.20		0.0050	mg/L	1	12/31/2019 05:05 PM
Beryllium	ND		0.0020	mg/L	1	12/31/2019 05:05 PM
Boron	0.72		0.020	mg/L	1	12/31/2019 05:05 PM
Cadmium	ND		0.0020	mg/L	1	12/31/2019 05:05 PM
Calcium	83		0.50	mg/L	1	12/31/2019 05:05 PM
Chromium	ND		0.0050	mg/L	1	12/31/2019 05:05 PM
Cobalt	ND		0.0050	mg/L	1	12/31/2019 05:05 PM
Lead	ND		0.0050	mg/L	1	12/31/2019 05:05 PM
Lithium	0.010		0.010	mg/L	1	12/31/2019 05:05 PM
Molybdenum	ND		0.0050	mg/L	1	12/31/2019 05:05 PM
Selenium	ND		0.0050	mg/L	1	12/31/2019 05:05 PM
Thallium	ND		0.0020	mg/L	1	12/31/2019 05:05 PM
ANIONS BY ION CHROMATOGRAPH	Υ		E300.0			Analyst: JDR
Chloride	580		50	mg/L	50	12/31/2019 03:43 PM
Fluoride	ND		2.0	mg/L	2	12/31/2019 03:24 PM
Sulfate	ND		4.0	mg/L	2	12/31/2019 03:24 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: QTN
pH (laboratory)	7.14	Н	0.100	s.u.	1	12/20/2019 03:28 PM
Temperature	18.0	Н	0.100	°C	1	12/20/2019 03:28 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/24/19 10:49	Analyst: ERW
Total Dissolved Solids	1,300		30	mg/L	1	12/26/2019 01:17 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	SUBCON See attached		ONTRAC [*] as not		Analyst: ALS 1/16/2020	

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19121443

Sample ID: MW-3 **Lab ID:** 19121443-06

Collection Date: 12/18/2019 04:45 PM Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 1/2/20 11:01	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/2/2020 03:15 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3005A 12/31/19 09:33	Analyst: DSC
Antimony	ND		0.0050	mg/L	1	12/31/2019 05:06 PM
Arsenic	ND		0.0050	mg/L	1	12/31/2019 05:06 PM
Barium	0.040		0.0050	mg/L	1	12/31/2019 05:06 PM
Beryllium	ND		0.0020	mg/L	1	12/31/2019 05:06 PM
Boron	0.77		0.020	mg/L	1	12/31/2019 05:06 PM
Cadmium	ND		0.0020	mg/L	1	12/31/2019 05:06 PM
Calcium	360		5.0	mg/L	10	1/2/2020 04:22 PM
Chromium	ND		0.0050	mg/L	1	12/31/2019 05:06 PM
Cobalt	ND		0.0050	mg/L	1	12/31/2019 05:06 PM
Lead	ND		0.0050	mg/L	1	12/31/2019 05:06 PM
Lithium	0.030		0.010	mg/L	1	12/31/2019 05:06 PM
Molybdenum	ND		0.0050	mg/L	1	12/31/2019 05:06 PM
Selenium	ND		0.0050	mg/L	1	12/31/2019 05:06 PM
Thallium	ND		0.0020	mg/L	1	12/31/2019 05:06 PM
ANIONS BY ION CHROMATOGRAP	HY		E300.0			Analyst: JDR
Chloride	150		80	mg/L	80	12/31/2019 05:00 PM
Fluoride	ND		5.0	mg/L	5	12/31/2019 04:41 PM
Sulfate	950		160	mg/L	80	12/31/2019 05:00 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: QTN
pH (laboratory)	6.66	Н	0.100	s.u.	1	12/20/2019 03:28 PM
Temperature	17.8	Н	0.100	°C	1	12/20/2019 03:28 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/24/19 10:49	Analyst: ERW
Total Dissolved Solids	2,000		30	mg/L	1	12/26/2019 01:17 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRACT as not		Analyst: ALS 1/16/2020

Subcontracted Analyses

Client: NTH Consultants, Ltd.

Holland Board of Public Works Work Order: 19121443 **Project:** Equipment Blank (EQB) **Lab ID:** 19121443-07 Sample ID: Collection Date: 12/18/2019 05:30 PM Matrix: WATER

Date: 28-Jan-20

Report Dilution Analyses Result **Date Analyzed** Qual Limit Units **Factor** Prep: SW7470 1/2/20 11:01 **MERCURY BY CVAA** SW7470A Analyst: RSH 1/2/2020 03:17 PM Mercury ND 0.00020 mg/L Prep: SW3005A 12/31/19 09:33 **METALS BY ICP-MS** SW6020A Analyst: DSC ND 0.0050 12/31/2019 05:08 PM Antimony mg/L 1 ND 1 12/31/2019 05:08 PM Arsenic 0.0050 mg/L Barium ND 0.0050 mg/L 1 12/31/2019 05:08 PM Beryllium ND 0.0020 mg/L 1 12/31/2019 05:08 PM Boron ND 0.020 mg/L 1 12/31/2019 05:08 PM Cadmium ND 0.0020 mg/L 1 12/31/2019 05:08 PM Calcium ND 0.50 mg/L 1 12/31/2019 05:08 PM Chromium ND 0.0050 mg/L 12/31/2019 05:08 PM Cobalt ND 0.0050 1 mg/L 12/31/2019 05:08 PM Lead ND 0.0050 mg/L 12/31/2019 05:08 PM Lithium ND 0.010 mg/L 1 12/31/2019 05:08 PM Molybdenum 0.0050 ND mg/L 12/31/2019 05:08 PM Selenium ND 0.0050 mg/L 12/31/2019 05:08 PM Thallium ND 0.0020 mg/L 1 12/31/2019 05:08 PM ANIONS BY ION CHROMATOGRAPHY E300.0 Analyst: JDR ND Chloride 1.0 mg/L 1 12/31/2019 05:19 PM Fluoride ND 1.0 mg/L 12/31/2019 05:19 PM Sulfate ND 2.0 12/31/2019 05:19 PM mg/L PH (LABORATORY) A4500-H B-11 Analyst: QTN pH (laboratory) 6.11 Н 0.100 12/20/2019 03:28 PM s.u. Н °C 12/20/2019 03:28 PM 0.100 1 **Temperature** 18.3 **TOTAL DISSOLVED SOLIDS** Prep: FILTER 12/24/19 10:49 A2540 C-11 Analyst: ERW 12/26/2019 01:17 PM **Total Dissolved Solids** 30 30 mg/L SUBCONTRACTED ANALYSES **SUBCONTRACT** Analyst: ALS 1/16/2020

as noted

1

Note: See Qualifiers page for a list of qualifiers and their definitions.

See attached

Client: NTH Consultants, Ltd.

Project: Holland Board of Public Works Work Order: 19121443

Sample ID: Field Duplicate (FD) Lab ID: 19121443-08

Collection Date: 12/18/2019 Matrix: GROUNDWATER

Date: 28-Jan-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 1/2/20 11:01	Analyst: RSH
Mercury	ND		0.00020	mg/L	1	1/2/2020 03:26 PM
METALS BY ICP-MS		SW6020		0A	Prep: SW3005A 12/31/19 09:33	Analyst: DSC
Antimony	ND		0.0050	mg/L	1	12/31/2019 05:10 PM
Arsenic	ND		0.0050	mg/L	1	12/31/2019 05:10 PM
Barium	0.040		0.0050	mg/L	1	12/31/2019 05:10 PM
Beryllium	ND		0.0020	mg/L	1	12/31/2019 05:10 PM
Boron	0.78		0.020	mg/L	1	12/31/2019 05:10 PM
Cadmium	ND		0.0020	mg/L	1	12/31/2019 05:10 PM
Calcium	340		5.0	mg/L	10	1/2/2020 04:56 PM
Chromium	ND		0.0050	mg/L	1	12/31/2019 05:10 PM
Cobalt	ND		0.0050	mg/L	1	12/31/2019 05:10 PM
Lead	ND		0.0050	mg/L	1	12/31/2019 05:10 PM
Lithium	0.030		0.010	mg/L	1	12/31/2019 05:10 PM
Molybdenum	ND		0.0050	mg/L	1	12/31/2019 05:10 PM
Selenium	ND		0.0050	mg/L	1	12/31/2019 05:10 PM
Thallium	ND		0.0020	mg/L	1	12/31/2019 05:10 PM
ANIONS BY ION CHROMATOGRAP	PHY		E300.0			Analyst: JDR
Chloride	150		80	mg/L	80	12/31/2019 05:58 PM
Fluoride	ND		5.0	mg/L	5	12/31/2019 05:38 PM
Sulfate	970		160	mg/L	80	12/31/2019 05:58 PM
PH (LABORATORY)			A4500-	H B-11		Analyst: QTN
pH (laboratory)	6.72	Н	0.100	s.u.	1	12/20/2019 03:28 PM
Temperature	18.7	Н	0.100	°C	1	12/20/2019 03:28 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/24/19 09:37	Analyst: ERW
Total Dissolved Solids	1,900		50	mg/L	1	12/26/2019 01:11 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See attached		SUBC	ONTRACT as not		Analyst: ALS 1/16/2020

Date: 28-Jan-20

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: 149907	Instrument ID HG4		Metho	d: SW74 7	70A					
MBLK	Sample ID: MBLK-149907-149	907			Units: mg/	L	Analysis	s Date: 1	/2/2020 02	2:38 PM
Client ID:	Rur	ID: HG4_2	00102A		SeqNo: 617	1248	Prep Date: 1/2/2	020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	ND	0.00020								
LCS	Sample ID: LCS-149907-1499 0)7			Units: mg/	L	Analysis	s Date: 1	/2/2020 02	::41 PN
Client ID:	Rur	ID: HG4_2	00102A		SeqNo: 617	1249	Prep Date: 1/2/2	020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.002329	0.00020	0.002		0 116	80-120	0			
MS	Sample ID: 19121443-01AMS				Units: mg/	L	Analysis	s Date: 1	/2/2020 02	2:51 PN
Client ID: PZ-1	Rur	ID: HG4_2	00102A		SeqNo: 617	1254	Prep Date: 1/2/2	020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.00201	0.00020	0.002	-0.0000	24 102	75-125	0			
MSD	Sample ID: 19121443-01AMS [)			Units: mg/	L	Analysis	s Date: 1	/2/2020 02	2:54 PN
Client ID: PZ-1	Rur	ID: HG4_2	00102A		SeqNo: 617	1255	Prep Date: 1/2/2	020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.00199	0.00020	0.002	-0.0000	24 101	75-125	0.00201	1	20	
The following sam	ples were analyzed in this batch	0 ⁻ 19 0 ⁻ 19	9121443- 1A 9121443- 4A 9121443- 7A	02 19 05 19	0121443- 2A 0121443- 5A 0121443- 8A	03	121443-			

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

Batch ID: 147847	Instrument ID ICPN	1 S3		Method	d: SW602	20A					
MBLK	Sample ID: MBLK-14784	7-14784	47			Units: mg/	L	Analy	/sis Date:	12/31/2019	04:48 PM
Client ID:		Run ID: ICPMS3_191231A			SeqNo: 616 9	9453	Prep Date: 12/31/2019		DF: 1		
Analyte	F	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony		ND	0.0050								
Arsenic		ND	0.0050								
Barium		ND	0.0050								
Beryllium		ND	0.0020								
Boron		ND	0.020								
Cadmium		ND	0.0020								
Calcium		ND	0.50								
Chromium		ND	0.0050								
Cobalt		ND	0.0050								
Lead		ND	0.0050								
Lithium		ND	0.010								
Molybdenum	0.0	00039	0.0050								J
Selenium		ND	0.0050								

LCS	Sample ID: LCS-147847-1478 4	17			ι	Jnits: mg/	L	Analy	/sis Date:	12/31/2019	04:49 PM
Client ID:	Run	ID: ICPMS	3_191231A		Se	qNo: 616 9	9454	Prep Date: 12	/31/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09576	0.0050	0.1		0	95.8	80-120		0		
Arsenic	0.1011	0.0050	0.1		0	101	80-120		0		
Barium	0.1025	0.0050	0.1		0	103	80-120		0		
Beryllium	0.09897	0.0020	0.1		0	99	80-120		0		
Boron	0.484	0.020	0.5		0	96.8	80-120		0		
Cadmium	0.105	0.0020	0.1		0	105	80-120		0		
Calcium	10.06	0.50	10		0	101	80-120		0		
Chromium	0.1002	0.0050	0.1		0	100	80-120		0		
Cobalt	0.1007	0.0050	0.1		0	101	80-120		0		
Lead	0.1026	0.0050	0.1		0	103	80-120		0		
Lithium	0.1018	0.010	0.1		0	102	80-120		0		
Molybdenum	0.1027	0.0050	0.1		0	103	80-120		0		
Selenium	0.1032	0.0050	0.1		0	103	80-120		0		
Thallium	0.09736	0.0050	0.1		0	97.4	80-120		0		

Thallium

0.000197

0.0050

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

Batch ID: 147847	Instrument ID ICPMS3	Method: SW6020A
-------------------------	----------------------	-----------------

MS	Sample ID: 19121443-01AMS		Units: mg/	L	Analysis Date: 12/31/2019 04:53 PM					
Client ID: PZ-1	Run	D: ICPMS	3_191231A	S	eqNo: 616 9	9456	Prep Date: 12/	31/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.1062	0.0050	0.1	0.003593	103	75-125	()		
Arsenic	0.1383	0.0050	0.1	0.03249	106	75-125	()		
Barium	0.1668	0.0050	0.1	0.06243	104	75-125	()		
Beryllium	0.1026	0.0020	0.1	0.000116	103	75-125	()		
Boron	0.8896	0.020	0.5	0.3803	102	75-125	()		
Cadmium	0.1022	0.0020	0.1	-0.00005	102	75-125	()		
Calcium	54.25	0.50	10	44.59	96.7	75-125	()		0
Chromium	0.1085	0.0050	0.1	0.00818	100	75-125	()		
Cobalt	0.1009	0.0050	0.1	0.001327	99.6	75-125	()		
Lead	0.124	0.0050	0.1	0.01844	106	75-125	()		
Lithium	0.1064	0.010	0.1	0.003371	103	75-125	()		
Molybdenum	0.1794	0.0050	0.1	0.06784	112	75-125	()		
Selenium	0.1097	0.0050	0.1	0.002651	107	75-125	()		
Thallium	0.09947	0.0050	0.1	0.000165	99.3	75-125	()		

MSD	Sample ID: 19121443-01AMSD		l	Jnits: mg/	L	Analysi	s Date: 1	12/31/2019 04:55 PM		
Client ID: PZ-1	Run	Run ID: ICPMS3_191231A		Se	SeqNo: 6169457		Prep Date: 12/3	1/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.1053	0.0050	0.1	0.003593	102	75-125	0.1062	0.844	20	
Arsenic	0.1391	0.0050	0.1	0.03249	107	75-125	0.1383	0.566	3 20	
Barium	0.1669	0.0050	0.1	0.06243	104	75-125	0.1668	0.0348	3 20	
Beryllium	0.1028	0.0020	0.1	0.000116	103	75-125	0.1026	0.135	5 20	
Boron	0.899	0.020	0.5	0.3803	104	75-125	0.8896	1.05	5 20	
Cadmium	0.1029	0.0020	0.1	-0.00005	103	75-125	0.1022	0.744	20	
Calcium	54.65	0.50	10	44.59	101	75-125	54.25	0.736	3 20	0
Chromium	0.1086	0.0050	0.1	0.00818	100	75-125	0.1085	0.0516	3 20	
Cobalt	0.1011	0.0050	0.1	0.001327	99.7	75-125	0.1009	0.166	3 20	
Lead	0.1248	0.0050	0.1	0.01844	106	75-125	0.124	0.653	3 20	
Lithium	0.1065	0.010	0.1	0.003371	103	75-125	0.1064	0.0996	3 20	
Molybdenum	0.1816	0.0050	0.1	0.06784	114	75-125	0.1794	1.23	3 20	
Selenium	0.1075	0.0050	0.1	0.002651	105	75-125	0.1097	2.03	3 20	
Thallium	0.09938	0.0050	0.1	0.000165	99.2	75-125	0.09947	0.0895	5 20	

The following samples were analyzed in this batch:

19121443-	19121443-	19121443-	
01A	02A	03A	
19121443-	19121443-	19121443-	
04A	05A	06A	
19121443- 07A	19121443- 08A		

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: 147613	Instrument ID TE	os		Metho	d: A2540	C-1	1					
MBLK	Sample ID: MBLK-147	7613-147613	3			U	Inits: mg /	L	An	alysis Date:	12/26/2019	01:11 PM
Client ID:		Run ID	TDS_19	91226B		Sec	qNo: 615 !	5077	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re ^o Value	f %RPD	RPD Limit	Qual
Total Dissolved Soli	ds	ND	30									
LCS	Sample ID: LCS-1476	13-147613				U	Inits: mg/	L	An	alysis Date:	12/26/2019	01:11 PM
Client ID:		Run ID	TDS_19	91226B		Sec	qNo: 615 !	5076	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re ^o Value	f %RPD	RPD Limit	Qual
Total Dissolved Soli	ds	472	30	495		0	95.4	85-109		0		
DUP	Sample ID: 19121443 -	01B DUP				U	Jnits: mg /	L	An	alysis Date:	12/26/2019	01:11 PM
Client ID: PZ-1		Run ID	TDS_19	91226B		Sec	qNo: 615	5056	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re [.] Value	f %RPD	RPD Limit	Qual
Total Dissolved Soli	ds	1548	30	0		0	0	0-0	1	514 2.2	2 10	
DUP	Sample ID: 19121630-	02A DUP				U	Inits: mg/	L	An	alysis Date:	12/26/2019	01:11 PM
Client ID:		Run ID	TDS_19	91226B		Sec	qNo: 615	5072	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value	f %RPD	RPD Limit	Qual
Total Dissolved Soli	ds	472	30	0		0	0	0-0		464 1.7	1 10	
The following sam	ples were analyzed in th	nis batch:	01	121443-		9121 2B	443-	19 03	9121443- BB			

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: 147616	Instrument ID TD	S		Metho	d: A2540	C-11						
MBLK	Sample ID: MBLK-1476	316-147616	ł			U	nits: mg/ l	L	Aı	nalysis Date:	12/26/2019	01:17 PM
Client ID:		Run ID:	TDS_19	1226C		Sec	No: 615	5101	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value		RPD Limit	Qual
Total Dissolved Solids	S	ND	30									
LCS	Sample ID: LCS-14761	6-147616				U	nits: mg/ l	L	Aı	nalysis Date:	12/26/2019	01:17 PM
Client ID:		Run ID:	TDS_19	1226C		Sec	No: 615	5100	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value		RPD Limit	Qual
Total Dissolved Solids	S	468	30	495		0	94.5	85-109		0		
DUP	Sample ID: 19121443-0	4B DUP				U	nits: mg/ l	L	Aı	nalysis Date:	12/26/2019	01:17 PM
Client ID: MW-1		Run ID:	TDS_19	1226C		Sec	No: 615	5079	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value		RPD Limit	Qual
Total Dissolved Solids	S	906	30	0		0	0	0-0		904 0.22	21 10	
DUP	Sample ID: 19121637-0	1D DUP				U	nits: mg/ l	L	Aı	nalysis Date:	12/26/2019	01:17 PM
Client ID:		Run ID:	TDS_19	1226C		Sec	No: 615	5096	Prep Date:	12/24/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Re Value		RPD Limit	Qual
Total Dissolved Solids	S	1440	30	0		0	0	0-0		1374 4.6	i 10	
The following sampl	les were analyzed in thi	s batch:	04	121443-		91214 5B	143-	19 06	1121443- BB			

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

Batch ID: R278188	Instrument ID Titi	ator 1		Metho	d: A4500	-H B-	-11					
LCS	Sample ID: LCS-R2781	88-R27818	18			U	nits: s.u.		Analys	is Date:	12/20/2019	03:28 PN
Client ID:		Run ID	TITRAT	OR 1_1912	20C	SeqNo: 6145574 Prep			Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		4.01	0.10	4		0	100	92-108	0			
LCS	Sample ID: LCS-R2781	88-R27818	18			U	nits: s.u.		Analys	is Date:	12/20/2019	03:28 PM
Client ID:		Run ID	TITRAT	OR 1_1912	20C	Sec	No: 614	5591	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		4.01	0.10	4		0	100	92-108	0			
DUP	Sample ID: 19121277- (2B DUP				U	nits: s.u.		Analys	is Date:	12/20/2019	03:28 PN
Client ID:		Run ID	TITRAT	OR 1_1912	20C	Sec	No: 614	5576	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		7.93	0.10	0		0	0	0-0	7.93		0 5	Н
Temperature		18.23	0.10	0		0	0	0-0	18.29	0.32	9	Н
DUP	Sample ID: 19121443- (3B DUP				U	nits: s.u.		Analys	is Date:	12/20/2019	03:28 PN
Client ID: Field Blar	nk (FB)	Run ID	TITRAT	OR 1_1912	20C	Sec	No: 614	5583	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		6.63	0.10	0		0	0	0-0	6.8	2.5	3 5	Н
Temperature		18.37	0.10	0		0	0	0-0	18.5	0.70	5	Н
The following samp	oles were analyzed in thi	s batch:	01 19 04	9121443- IB 9121443-	02 19 09 19	91214 2B 91214 5B 91214 3B	143-	03	121443-			

QC BATCH REPORT

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

Batch ID: R279864	Instrument ID IC3			Metho	d: E300.0)						
MBLK	Sample ID: CCB/MBLK	-R279864					Units: mg/L		Analys	is Date:	12/31/2019	12:12 PM
Client ID:		Run ID	: IC3_19	1231A		S	SeqNo: 6170	075	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		ND	1.0									
Fluoride		ND	0.10									
Sulfate		ND	1.0									
LCS	Sample ID: LCS-R2798	64					Units: mg/L	•	Analys	is Date:	12/31/2019	12:32 PM
Client ID:		Run ID	: IC3_19	1231A		S	SeqNo: 6170	076	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		9.131	1.0	10		0		90-110	0			
Fluoride		1.817	0.10	2		0		90-110	0			
Sulfate		9.217	1.0	10		0		90-110	0			
MS	Sample ID: 19121443-0	1B MS					Units: mg/L		Analys	is Date:	12/31/2019	06:17 PM
Client ID: PZ-1		Run ID	un ID: IC3_191231A			S	SeqNo: 6170		Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		600.2	40	400	213	3.9	96.6	80-120	0			
Fluoride		78.48	4.0	80		0		80-120	0			
Sulfate		410	40	400	29.	96	95	80-120	0			
MSD	Sample ID: 19121443-0	1B MSD					Units: mg/L		Analys	is Date:	12/31/2019	06:36 PM
Client ID: PZ-1		Run ID	: IC3_19	1231A		S	SeqNo: 6170	095	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		599.5	40	400	213	3.9	96.4	80-120	600.2	0.11	7 20	
Fluoride		82.58	4.0	80		0	103	80-120	78.48	5.0	9 20	
Sulfate		409.5	40	400	29.	96	94.9	80-120	410	0.12	6 20	
The following samp	oles were analyzed in thi	s batch:	01	0121443- B 0121443-	02 19	2B	21443-	031	121443-			
				121443-	19		21443-	001				

Client: NTH Consultants, Ltd.

Work Order: 19121443

Project: Holland Board of Public Works

QC BATCH REPORT

Batch ID: R279938	Instrument ID IC3			Metho	d: E300.0							
MBLK	Sample ID: CCB/MBLK	-R279938				l	Units: mg/L		Analys	is Date: 1/	2/2020 10	:55 AM
Client ID:		Run ID:	IC3_20	0102A		Se	eqNo: 6171	942	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		ND	1.0									
LCS	Sample ID: LCS-R27993	38				Į	Units: mg/L	•	Analys	is Date: 1/	2/2020 11	:14 AM
Client ID:		Run ID:	IC3_20)102A		Se	eqNo: 6171	943	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		9.293	1.0	10		0	92.9	90-110	0			
MS	Sample ID: 19121443-0	1B MS				Į	Units: mg/L	-	Analys	is Date: 1/	2/2020 01	:46 PM
Client ID: PZ-1		Run ID:	IC3_20)102A		Se	eqNo: 6171	945	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		404.4	40	400	29.3	38	93.8	80-120	0			
MS	Sample ID: 19121705-0	3B MS				Į	Units: mg/L		Analys	is Date: 1/	2/2020 06	:08 PM
Client ID:		Run ID:	IC3_20	0102A		Se	eqNo: 6171	958	Prep Date:		DF: 20	0
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		2383	200	2000	52	29	92.7	80-120	0			
MSD	Sample ID: 19121443-0	1B MSD				Į	Units: mg/L	-	Analys	is Date: 1/	2/2020 02	:05 PM
Client ID: PZ-1		Run ID:	IC3_20	0102A		Se	eqNo: 6171	946	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		407.8	40	400	29.3	38	94.6	80-120	404.4	0.83	20	
MSD	Sample ID: 19121705-0	3B MSD				Į	Units: mg/L	_	Analys	is Date: 1/	2/2020 06	:27 PM
Client ID:		Run ID:	IC3_20	0102A		Se	eqNo: 6171	959	Prep Date:		DF: 20	0
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		2386	200	2000	52	29	92.8	80-120	2383	0.14	20	
	oles were analyzed in this	s batch:	19 01	121443- B								

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 Fort Collins, CO +1 970 490 1511

+1 616 399 6070

Holland, MI

Chain of Custody Form

Page COC ID: 203235 Houston, TX +1 281 530 5656

> Salt Lake City, UT +1 801 266 7700

Spring City, PA

+1 610 948 4903

South Charleston, WV +1 304 356 3168

York, PA

Middletown, PA +1 717 944 5541 +1 717 505 5280

121443 ALS Work Order #: **ALS Project Manager: Project Information** Parameter/Method Request for Analysis Customer Information Metais including Ha **Purchase Order** Holland BPW **Project Name** Chichae, Fluoride, Sulfate 73-160017 В Work Order **Project Number** Halland Board of Public Works oH NTH Consultants, Ltd. С Company Name **Bill To Company** TUS Karen Okonta Accounts Payable D Send Report To Invoice Attn Radium 226 & 228 41780 Six Mile Road 625 Hastings E Address Address F Holland, Mi 49423 G Northville, Mi 46168 City/State/Zip City/State/Zip Н (248) 662-2668 (616) 355-1210 Phone Phone ı (248) 324-5305 Fax Fax J KOKOnta@nthmeultants.com e-Mail Address e-Mail Address Н Sample Description Time Matrix Pres. # Bottles Α В Ċ D E F G Hold No. 12-18-19 11:50am. 1 Matrix Spike PZ-1 12:00 p.m 12:15pm Matrix Spike Duplicate 72-1 MW-H 1:45 p.m. 12-18-19 12-18-19 FB (Feld Blank (FB) MW-4 MM-16:06 EQUIPMENT BLANK(EQB) 5:30 p.m. 19 Field Duplicate (FD)
Sampler(s) Please Print & Sign Required Turnaround Time: (Check Box) Results Due Date: Shipment Method 12/18/2019 2 WK Days X Std 10 WK Davs | 5 WK Davs 24 Hour Relinquished by: Time: Received by: Time: Convert to Received by (Laboratory): Cooler Temp. QC Package: (Check One Box Below) Relinquished by: Cooler ID Q800 Lavel II Std QC TPRP CheckList Checked by (Laboratory): 5.8% Lavel III Std QC/Raw Data TRRP Level IV Date: 202 Logged by (Laboratory): Time: 12 ے ق 1000 Level IV \$W846/CLP 10 سکا ہاجم O.C 5-Na₂S₂O₃ 6-NaHSO₄ 7-Other 9-5035 Other 1-HCI 2-HNO₂ 3-H₂SO₄ 4-NaOH Preservative Key:

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

Sample Receipt Checklist

Client Name:	NTH - NORTHVILLE			D	ate/Time F	Received:	19-Dec-1	9 08:00	<u>)</u>	
Work Order:	19121443			R	eceived by	y:	<u>DS</u>			
Checklist comp	leted by Diane Shaw	19	-Dec-19	Revie	wed by:	Chad W	/helton			19-Dec-19
Matrices: Carrier name:	<u>Groundwater</u> <u>Client</u>	l							1	
Shipping contai	ner/cooler in good condition?		Yes	✓	No 🗌	Not Pres	sent 🗌			
Custody seals i	ntact on shipping container/coole	r?	Yes		No 🗌	Not Pres	sent 🗸			
Custody seals i	ntact on sample bottles?		Yes [No 🗌	Not Pres	sent 🗸			
Chain of custod	ly present?		Yes	✓	No 🗌					
Chain of custod	dy signed when relinquished and	received?	Yes	✓	No 🗌					
Chain of custod	ly agrees with sample labels?		Yes	✓	No 🗌					
Samples in prop	per container/bottle?		Yes	✓	No 🗌					
Sample contain	ners intact?		Yes	✓	No 🗌					
Sufficient samp	le volume for indicated test?		Yes	✓	No 🗌					
All samples rec	eived within holding time?		Yes	✓	No 🗌					
Container/Temp	p Blank temperature in complianc	ce?	Yes	✓	No 🗌					
Sample(s) rece Temperature(s)	ived on ice? /Thermometer(s):		Yes 5.8/5.8,	/ 5.0/5.0, 5	No	SI	<u>R2</u>			
Cooler(s)/Kit(s)	:									
	ple(s) sent to storage:			19 10:26		No Mondal				
	als have zero headspace?		Yes [No 🗀	No VOA vial	s submitted			
	eptable upon receipt?		r	✓	No ☑ No ☑	N/A				
pH adjusted? pH adjusted by:	:		Yes l		NO 💌	N/A 📙				
Login Notes:										
						====				
Client Contacte	d:	Date Contacted:			Person	Contacted:				
Contacted By:		Regarding:								
Comments:										
CorrectiveActio	n:								SDC D	ago 1 of 1

Ft. Collins, Colorado LIMS Version: 7.001 Page 1 of 1

Monday, January 13, 2020

Chad Whelton ALS Environmental 3352 128th Avenue Holland, MI 49424

Re: ALS Workorder: 1912404

Project Name:

Project Number: 19121443

uli Elliza

Dear Mr. Whelton:

Eight water samples were received from ALS Environmental, on 12/20/2019. The samples were scheduled for the following analyses:

Radium-226
Radium-228

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely,

ALS Environmental ForJeff R. Kujawa

Project Manager

ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environmental – Fort Collins								
ALS Environme	ntal – Fort Collins							
A care ditation Dody	License or Contification Number							
Accreditation Body	<u>License or Certification Number</u>							
AIHA	214884							
Alaska (AK)	UST-086							
Alaska (AK)	CO01099							
Arizona (AZ)	AZ0742							
California (CA)	06251CA							
Colorado (CO)	CO01099							
Florida (FL)	E87914							
Idaho (ID)	CO01099							
Kansas (KS)	E-10381							
Kentucky (KY)	90137							
PJ-LA (DoD ELAP/ISO 170250)	95377							
Louisiana (LA)	05057							
Maryland (MD)	285							
Missouri (MO)	175							
Nebraska(NE)	NE-OS-24-13							
Nevada (NV)	CO000782008A							
New York (NY)	12036							
North Dakota (ND)	R-057							
Oklahoma (OK)	1301							
Pennsylvania (PA)	68-03116							
Tennessee (TN)	2976							
Texas (TX)	T104704241							
Utah (UT)	CO01099							
Washington (WA)	C1280							

1912404

Radium-228:

The samples were analyzed for the presence of ²²⁸Ra by low background gas flow proportional counting of ²²⁸Ac, which is the ingrown progeny of ²²⁸Ra, according to the current revision of SOP 724.

All acceptance criteria were met.

Radium-226:

The samples were prepared and analyzed according to the current revision of SOP 783.

All acceptance criteria were met.

Sample Number(s) Cross-Reference Table

OrderNum: 1912404

Client Name: ALS Environmental

Client Project Name:

Client Project Number: 19121443
Client PO Number: 20-122019492

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
MW-4	1912404-1		WATER	18-Dec-19	13:45
Field Blank (FB)	1912404-2		WATER	18-Dec-19	13:45
MW-1	1912404-3		WATER	18-Dec-19	15:40
MW-2	1912404-4		WATER	18-Dec-19	16:06
MW-3	1912404-5		WATER	18-Dec-19	16:45
Equipment Blank (EQB)	1912404-6		WATER	18-Dec-19	17:30
Field Duplicate (FD)	1912404-7		WATER	18-Dec-19	
PZ-1	1912404-8		WATER	18-Dec-19	11:50

Subcontractor:

ALS Environmental, Fort Collins

225 Commerce Dr.

(800) 443-1511 TEL:

FAX: Acct #:

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Date: 19-Dec-19 COC ID: 12144

Due Date: 09-Jan-20

Fort Collins, CO 80524

	Salesperson	Brian	Root													
C	Customer Information			Pro	ject Informa	ation			Par	ameter/	Method	Reques	for Ana	lysis		
Purchase Order		P	roject	Name	19121443		A S	ubcontrac	ted Ana	yses (S	UBCON	TRACT)				
Work Order		P	roject	Number			В		um a							
Company Name	ALS Group USA, Corp	В	Bill To C	Company	ALS Group	USA, Corp	С	15	IMS	D	2.00					
Send Report To	Chad Whelton	Ir	nv Attn		Accounts P	ayable	D									
Address	3352 128th Ave	А	ddress	3	3352 128th	Ave	E									
							8E8			-						
City/State/Zip	Holland, Michigan 49424	С	ity/Sta	te/Zip	Holland, Mi	chigan 49424	G									
Phone	(616) 399-6070	Р	hone		(616) 399-60	070	Н									
Fax	(616) 399-6185	F	ax		(616) 399-6	185	216									
eMail Address	chad.whelton@alsglobal.com	m el	Mail C	С			J									
ALS Sample ID	Client Sample ID	Matri	ix	Collection I	Date 24hr	Bottle	Α	В	С	D	E	F	G	Н	1	J
19121443-02C	MW-4	Groundy	water	18/Dec/201	19 13:45	(2) 1LPHNO3	Х									
19121443-03C	Field Blank (FB) MW-4	Groundy	vater	18/Dec/201	19 13:45	(2) 1LPHNO3	X									
19121443-04C	MW-1	Groundy	water	18/Dec/201	19 15:40	(2) 1LPHNO3	X									
19121443-05C	MW-2	Groundy	vater	18/Dec/201	19 16:06	(2) 1LPHNO3	X				1					
19121443-06C	MW-3	Groundw	vater	18/Dec/201	19 16:45	(2) 1LPHNO3	X									
19121443-07C	Equipment Blank (EQB)	Wate	er	18/Dec/201	19 17:30	(2) 1LPHNO3	X									
19121443-08C	Field Duplicate (FD)	Groundw	vater	18/Dec/	2019	(2) 1LPHNO3	X									
19121443-01C	PZ-1	Groundw	vater	18/Dec/201	19 11:50	(6) 1LPHNO3	X		X							

~				
('0	m	m	٥n	te.

3

Please analyze these samples per our instructions and indicated turnaround requirements. Please include all QC with data. The samples do not need to be returned and can be disposed after 30 days.

						1
Relinguished by	Date/Time	Received by:	Date/Time	Cooler IDs	Report/QC Level	Г
Led //	12-19-19 1400	En 2	12/20/19 1055		Std	
Relinquished by:	Date/Time	Received by:	Date/Time			

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client: ALS Holland	Workorder No:	1912404		
Project Manager: SRK	Initials: E E	Date: 12/20	3/19	_
1. Are airbills / shipping documents present and/or remo	ovable?	DROP OFF	(FES)	NO
2. Are custody seals on shipping containers intact?		NONE	YES	NO *
3. Are custody seals on sample containers intact?		NOVE	YES	NO *
4. Is there a COC (chain-of-custody) present?			(YES	NO*
Is the COC in agreement with samples received? (IDs, containers, matrix, requested analyses, etc.)	dates, times, # of samples	s, # of	YES	NO*
6. Are short-hold samples present?			YES	No
7. Are all samples within holding times for the requested	analyses?		YES	NO*
8. Were all sample containers received intact? (not brok	en or leaking)		(E)	NO*
9 Is there sufficient sample for the requested analyses?			(F)	NO*
10. Are samples in proper containers for requested analys	es? (form 250, Sample Hand	ling Guidelines)	(E)	NO *
11. Are all aqueous samples preserved correctly, if require	ed? (excluding volatiles)	N/A	YES	NO *
Are all samples requiring no headspace (VOC, GRO, RS 6 mm (1/4 inch) diameter? (i.e. size of green pea)	K/MEE, radon) free of b	ubbles > N/A	YES	NO
13. Were the samples shipped on ice?			YES	W
14. Were cooler temperatures measured at 0.1-6.0°C2 1	gun ed*: #3 #5	RADONLY	YES	NO
Background mR/hr reading:		1.3192).
Were unpreserved bottles pH checked? YES (NA)	All client bottle ID's vs	ALS lab ID's double	-checked b	y: <i>E5</i>
If applicable, was the client contacted? YES / NO / NA Contact:		Date/Ti		
Project Manager Signature / Date:	2/27/9			
	/ VR SN 170647571 VR SN 192272629			

Date: 19Dec19 Wgt: 55.95 LBS

SHIPPING: SPECIAL: HANDLING:

0.00 TOTAL:

0.00

Svcs: PRIORITY OVERNIGHT NSR RES TRCK: 4892 9284 6933

ORIGIN ID:GRRA (EALS ENVIRONMENTAL (616) 399-6070 3352 128TH AVENUE

SHIP DATE: 19DEC19 ACTWGT: 55.95 LB CAD: 0122071/CAFE3311

BILL THIRD PARTY

HOLLAND, MI 494249263 UNITED STATES US

ALS LABORATORY GROUP 10 SAMPLE RECEIVING 225 COMMERCE DR.

FORT COLLINS CO 80524

(800) 443 - 1511 INU: PO:

FedEx Express

REL# 3785346

TRK# | 4892 9284 6933

FRI - 20 DEC 10:30A PRIORITY OVERNIGHT **NSR RES** 80524

co-us DEN

NA FTCA

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 13-Jan-20

 Project:
 19121443
 Work Order:
 1912404

 Sample ID:
 Field Blank (FB)
 Lab ID:
 1912404-2

Legal Location: Matrix: WATER

Collection Date: 12/18/2019 13:45 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emana	tion - Method 903.1	SOI	P 783	Prep	Date: 1/6/2020	PrepBy: TRW
Ra-226	ND (+/- 0.24)	Y1,U	0.44	pCi/l	NA	1/13/2020 11:51
Carr: BARIUM	102	Y1	40-110	%REC	DL = NA	1/13/2020 11:51
Radium-228 Analysis by GFP0		SOI	P 724	Prep	Date: 1/3/2020	PrepBy: RGS
Ra-228	ND (+/- 0.32)	U	0.7	pCi/l	NA	1/10/2020 08:16
Carr: BARIUM	95.8		40-110	%REC	DL = NA	1/10/2020 08:16

AR Page 2 of 9 9 of 18

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 13-Jan-20

 Project:
 19121443
 Work Order:
 1912404

 Sample ID:
 MW-1
 Lab ID:
 1912404-3

 Legal Location:
 Matrix:
 WATER

Collection Date: 12/18/2019 15:40 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanat	ion - Method 903.1	SOF	P 783	Prep	Date: 1/6/2020	PrepBy: TRW
Ra-226	ND (+/- 0.28)	U	0.43	pCi/l	NA	1/13/2020 11:51
Carr: BARIUM	96.8		40-110	%REC	DL = NA	1/13/2020 11:51
Radium-228 Analysis by GFPC	;	SOF	P 724	Prep	Date: 1/3/2020	PrepBy: RGS
Ra-228	0.93 (+/- 0.43)		0.73	pCi/l	NA	1/10/2020 08:16
Carr: BARIUM	93.7		40-110	%REC	DL = NA	1/10/2020 08:16

AR Page 3 of 9 10 of 18

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 13-Jan-20

 Project:
 19121443
 Work Order:
 1912404

 Sample ID:
 MW-2
 Lab ID:
 1912404-4

 Legal Location:
 Matrix:
 WATER

Collection Date: 12/18/2019 16:06 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanat	ion - Method 903.1	SOP	783	Prep	Date: 1/6/2020	PrepBy: TRW
Ra-226	0.64 (+/- 0.38)		0.43	pCi/l	NA	1/13/2020 11:51
Carr: BARIUM	97.2		40-110	%REC	DL = NA	1/13/2020 11:51
Radium-228 Analysis by GFPC	;	SOP	724	Prep	Date: 1/3/2020	PrepBy: RGS
Ra-228	1.05 (+/- 0.47)		0.76	pCi/l	NA	1/10/2020 08:16
Carr: BARIUM	94		40-110	%REC	DI = NA	1/10/2020 08:16

AR Page 4 of 9 11 of 18

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 13-Jan-20

 Project:
 19121443
 Work Order:
 1912404

 Sample ID:
 MW-3
 Lab ID:
 1912404-5

 Legal Location:
 Matrix:
 WATER

Collection Date: 12/18/2019 16:45 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanat	ion - Method 903.1	SO	P 783	Prep	Date: 1/6/2020	PrepBy: TRW
Ra-226	ND (+/- 0.14)	U	0.21	pCi/l	NA	1/13/2020 11:51
Carr: BARIUM	98.6		40-110	%REC	DL = NA	1/13/2020 11:51
Radium-228 Analysis by GFPC	;	SO	P 724	Prep	Date: 1/3/2020	PrepBy: RGS
Ra-228	ND (+/- 0.38)	U	0.76	pCi/l	NA	1/10/2020 08:16
Carr: BARIUM	96.4		40-110	%REC	DI = NA	1/10/2020 08:16

AR Page 5 of 9 12 of 18

Collection Date: 12/18/2019 17:30

SAMPLE SUMMARY REPORT

Percent Moisture:

Client: ALS Environmental Date: 13-Jan-20

 Project:
 19121443
 Work Order:
 1912404

 Sample ID:
 Equipment Blank (EQB)
 Lab ID:
 1912404-6

Legal Location: Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation -	Method 903.1	SOI	P 783	Prep	Date: 1/6/2020	PrepBy: TRW
Ra-226	ND (+/- 0.21)	U	0.33	pCi/l	NA	1/13/2020 11:51
Carr: BARIUM	99.9		40-110	%REC	DL = NA	1/13/2020 11:51
Radium-228 Analysis by GFPC		SOI	P 724	Prep	Date: 1/3/2020	PrepBy: RGS
Ra-228	ND (+/- 0.29)	Y1,U	0.68	pCi/l	NA	1/10/2020 08:16
Carr: BARIUM	100	Y1	40-110	%REC	DL = NA	1/10/2020 08:16

AR Page 6 of 9 13 of 18

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 13-Jan-20

Project: 19121443 **Work Order:** 1912404

Sample ID:Field Duplicate (FD)Lab ID:1912404-7Legal Location:Matrix:WATER

Collection Date: 12/18/2019 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanati	ion - Method 903.1	SO	P 783	Prep	Date: 1/6/2020	PrepBy: TRW
Ra-226	ND (+/- 0.25)	U	0.45	pCi/l	NA	1/13/2020 11:51
Carr: BARIUM	98.1		40-110	%REC	DL = NA	1/13/2020 11:51
Radium-228 Analysis by GFPC		SO	P 724	Prep	Date: 1/3/2020	PrepBy: RGS
Ra-228	ND (+/- 0.4)	U	0.76	pCi/l	NA	1/10/2020 08:16
Carr: BARIUM	96.9		40-110	%REC	DL = NA	1/10/2020 08:16

AR Page 7 of 9 **14 of 18**

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 13-Jan-20

Project: 19121443 Work Order: 1912404

 Project:
 19121443

 Sample ID:
 PZ-1

 Legal Location:
 Matrix:

WATER

Collection Date: 12/18/2019 11:50 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanat	ion - Method 903.1	SO	P 783	Prep	Date: 1/6/2020	PrepBy: TRW
Ra-226	ND (+/- 0.32)	U	0.55	pCi/l	NA	1/13/2020 11:51
Carr: BARIUM	93.7		40-110	%REC	DL = NA	1/13/2020 11:51
Radium-228 Analysis by GFPC	;	SO	P 724	Prep	Date: 1/3/2020	PrepBy: RGS
Ra-228	ND (+/- 0.38)	U	0.82	pCi/l	NA	1/10/2020 08:16
Carr: BARIUM	87.1		40-110	%REC	DI = NA	1/10/2020 08:16

AR Page 8 of 9 15 of 18

SAMPLE SUMMARY REPORT

Client: ALS Environmental Date: 13-Jan-20

 Project:
 19121443
 Work Order:
 1912404

 Sample ID:
 PZ-1
 Lab ID:
 1912404-8

Sample ID: PZ-1 Lab ID: 1912404-3
Legal Location: Matrix: WATER

Collection Date: 12/18/2019 11:50 Percent Moisture:

Report Dilution
Analyses Result Qual Limit Units Factor Date Analyzed

Explanation of Qualifiers

Radiochemistry:

- "Report Limit" is the MDC

U or ND - Result is less than the sample specific MDC.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

W - DER is greater than Warning Limit of 1.42

* - Aliquot Basis is 'As Received' while the Report Basis is 'Dry Weight'.

- Aliquot Basis is 'Dry Weight' while the Report Basis is 'As Received'.

G - Sample density differs by more than 15% of LCS density.

D - DER is greater than Control Limit

M - Requested MDC not met.

M3 - The requested MDC was not met, but the reported activity is greater than the reported MDC.

L - LCS Recovery below lower control limit.

H - LCS Recovery above upper control limit.

P - LCS, Matrix Spike Recovery within control limits.

N - Matrix Spike Recovery outside control limits

NC - Not Calculated for duplicate results less than 5 times MDC

B - Analyte concentration greater than MDC.

B3 - Analyte concentration greater than MDC but less than Requested

MDC.

Inorganics:

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

U or ND - Indicates that the compound was analyzed for but not detected.

E - The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.

M - Duplicate injection precision was not met

N - Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.

Z - Spiked recovery not within control limits. An explanatory note may be included in the narrative.

* - Duplicate analysis (relative percent difference) not within control limits.

S - SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

U or ND - Indicates that the compound was analyzed for but not detected.

- B Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.
- E Analyte concentration exceeds the upper level of the calibration range.
- J Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).
- A A tentatively identified compound is a suspected aldol-condensation product.
- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.
- Z This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products:
- gasoline
- JP-8
- dieselmineral spirits
- mineral spirits - motor oil
- Stoddard solvent
- bunker C

Client: ALS Environmental

Work Order: 1912404 **Project:** 19121443

Date: 1/13/2020 3:20:

QC BATCH REPORT

DUP	Sample ID: 1912404-8				Ur	nits: pCi/l		Analysi	is Date: 1	/13/202	20 12:11	
Client ID: F	PZ-1	Run II	D: RE200106-	3A			Pr	ep Date: 1/6/2	2020	DF:	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-226		ND	0.51						0.19	0.3	2.1	U
Carr: BARI	IUM	15890		17840		89.1	40-110		16700			
LCS	Sample ID: RE200106-3				Ur	nits: pCi/l		Analysi	s Date: 1	/13/202	20 12:27	
Client ID:		Run II	D: RE200106-	3A			Pr	ep Date: 1/6/2	2020	DF:	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-226		35.8 (+/- 9)	0.5	46.47		77	67-120					Р
Carr: BARI	IUM	17270		17770		97.2	40-110					
МВ	Sample ID: RE200106-3				Ur	nits: pCi/l		Analysi	is Date: 1	/13/202	20 12:11	
Client ID:		Run II	D: RE200106-	3A			Pr	ep Date: 1/6/2	2020	DF:	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-226		ND	0.23									U
Carr: BARI	IUM	17070		17780		96	40-110					
The follow	wing samples were analyzed	in this batch:	19124 19124 19124	104-4	191240 191240 191240	14-5	19124 19124					

Client: ALS Environmental

Work Order: 1912404 **Project:** 19121443

QC BATCH REPORT

Batch ID: R	RA200103-1-1	Instrument ID LB	4100-C		Method: R	adium-228	3 Analysi	s by GFPC				
DUP	Sample ID: 1912404-8	8		Units: pCi/l Analysis Date:						/10/202	20 08:16	
Client ID: P	PZ-1	Run II	Run ID: RA200103-1A			ī			Prep Date: 1/3/2020			
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-228		ND	0.95						0.15	0.5	2.1	U
Carr: BARI	ИМ	26820		35300		76	40-110		30740			
LCS	Sample ID: RA200103	3-1			U	nits: pCi/l		Analys	s Date: 1	1/10/202	20 08:16	
Client ID:		Run II	D: RA200103 -	1A			I	Prep Date: 1/3/ 2	2020	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qua
Ra-228		41 (+/- 9.5)	0.8	41.09		99.8	70-130					Р
Carr: BARI	UM	34310		35300		97.2	40-110					
МВ	Sample ID: RA200103	3-1			U	nits: pCi/l		Analys	s Date: 1	/10/202	20 08:16	
Client ID:		Run II	D: RA200103 -	1A			I	Prep Date: 1/3/2	2020	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-228		ND	0.73									U
Carr: BARI	UM	34720		35300		98.3	40-110					
The following samples were analyzed in this batch:		1912404-1 1912404-4 1912404-7		1912404-2 1912404-5 1912404-8		1912404-3 1912404-6						

QC Page: 2 of 2

GROUNDWATER SAMPLE COLLECTION LOG

		Abbie Welch							
	and: Phil Herout	Abbie Wekh							
Vell Const.;		Field Personnel: Phil Herart, Abbie Welch,							
	Well Const.: PVC Keith Forguhar								
Casing Diameter: 2.0"									
creened Int	terval (ft. from TOC):_	NA							
op of Casin	ng (ft.): 592.91								
DATA									
11:48									
	0.04	0.12							
	0.10	0.30							
	(0.16)	0.48							
	0.36	1.08							
	0.63	1.89							
urging Rate	e (g.p.m.) 0.066	(250 mL/min)							
9 00									
8.84									
9.21									
2.32									
-176.5									
0.07									
0.00									
G DATA									
ump Rate (g		250ml/min)							
OU	- 16 mph	Snowy							
		onmental							
	,	C (4)							
process	of establishing	ing a flow-rate fr							
	arging and arging Rate ote: Averinch well G PARAM 7.21 7.2	er (in) Casing Vol. (Gal./Ft.) 0.04 0.10 0.16 0.36 0.63 arging and Sampling Device: Inrging Rate (g.p.m.) O. Older of the Average low flow rate of 0.1 inch well typically results in a draw G PARAMETERS 9:00 8.84 7.21 2.32 -176.5 0.04 0.06 Contraction: Number of the properties of the pr							

Low-Flow Test Report:

Test Date / Time: 12/18/2019 11:39:24 AM

Project: 73-160017

Operator Name: Keith, Phil, Abby

Location Name: PZ-1

Latitude: -55.1263038723041 Longitude: -10.2938732877374

Well Diameter: 2 in Casing Type: PVC Screen Length: 5 ft Top of Screen: 8.54 ft Total Depth: 13.54 ft

Initial Depth to Water: 9.79 ft

Pump Type: Peristaltic

Tubing Type: PE

Pump Intake From TOC: 11 ft Estimated Total Volume Pumped:

2250 ml

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min Final Draw Down: 10.64 ft Instrument Used: Aqua TROLL 600

Serial Number: 518546

Test Notes:

Weather Conditions:

Snowy, 17°F

Low-Flow Readings:

Date Time	Elapsed Time	pН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.2	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.5	
12/18/2019 11:39 AM	00:00	8.86 pH	8.99 °C	2.35 mS/cm	3.81 mg/L	1.05 NTU	-85.0 mV	9.79 ft	250.00 ml/min
12/18/2019 11:42 AM	03:00	8.84 pH	9.13 °C	2.33 mS/cm	0.12 mg/L	0.00 NTU	-145.2 mV	9.79 ft	250.00 ml/min
12/18/2019 11:45 AM	06:00	8.85 pH	8.99 °C	2.32 mS/cm	0.07 mg/L	0.00 NTU	-164.5 mV	9.79 ft	250.00 ml/min
12/18/2019 11.48 AM	09:00	8.84 pH	9.21 °C	2.32 mS/cm	0.07 mg/L	0.00 NTU	-176.5 mV	9.79 ft	250.00 ml/min

Samples

Sample ID:	Description:	

Created using VuSitu from In-Situ, Inc.

GROUNDWATER SAMPLE COLLECTION LOG

		GEN	ERAL II	VFORMA'	TION						
Project Name: Holland BPW -	James DeY	oung PP		Date:	2/18/	19					
Project #: 73-160017				Field Personnel: Phil Herout, Abbie Welch							
Site Location: Holland, MI				Well Const.: Sch 40 PVC Keith Farguhar							
Well ID: MW-1				Casing Diameter: 2.0"							
Sample ID (if different than We	ll ID):			Screened Interval (ft. from TOC):9.0'-14.0 (12.0'-17.0')							
				Top of Casing (ft.): 588.53							
			PURGI	NG DATA							
Time: 15 min Start: 1	5:17		Finish:	3.5							
Purging Volume		Cas	ing Dian	neter (in)		ol. (Gal./Ft) 30	Casing Vol.			
Purging volume			1			0.04		0.12			
Total Well Depth (ft. from TOC)=16.8	В	1.5			0.10		0.30			
Depth to Water (ft. from TOC) =	6.0	5	2			0.16		0.48			
Height of Water in Well (ft.)	-10.8	3	3			0.36		1.08			
One Well Volume (gallons)	= 1.7	3	4			0.63		1.89			
Gallons Purged: 1.6%				Purging an	d Samplin	g Device:	-		-		
Well Volumes Purged: 0,1	171			Purging Ra	ate (g.p.m.)	0.118	(48	15 mL	min)		
Was Well Purged Dry? Yes ~	No~					low rate of 0	.13 g.p.ı	m. (500 mL	/min) on a		
		FIELD M	ONITOR	2-inch well ING PARA		results in a d	rawdow	n of 0.5 ft o	or less		
Time/Elapsed time (minutes)	0:60	3:00	6:00	10:00	12:00	15 '00					
Accum. Volume Purged (gal)	0,00	3,00	6.00	7.00	12.00	13,00					
Drawdown (ft)											
рН	7.36	7.30	7.27	7.25	7.24	7.23					
Temperature (C)	718	7.52	751	7.29	7.31	7.39					
Conductivity (mS/cm)	1.57	1.54	1,44		1.40	37-					
ORP (mV)	711	-104.9	-11a.5			-199-1					
Dissolved Oxygen (mg/L)	1.80			0.19	0.17						
Turbidity (NTU)	0.49	1.77	6.35	7.13	9.40	6.94					
Odor	0.41	1.11	6.00	1.1.3	1110	6.1					
Appearance and/or Color											
	1		SAMPLI	NG DATA		L					
Time: Start: 15:17 Fin	ish: 15%	12	T	Pump Rate	(g.p.m.):						
Sample Collection Depth (ft. from	TOC):					-					
Weather Conditions: Air Tempers		18°	Wind	Speed/Direc	ction: Nu	Othe	r: <u>Sn</u>	owing			
Samples Collected On chain of Cu	stody No:		Analyti	cal Laborat	ory:						
Other Notes:											

Low-Flow Test Report:

Test Date / Time: 12/18/2019 3:15:07 PM

Project: 73-160017 (3)

Operator Name: Keith, Phil, Abby

Location Name: MW-1
Well Diameter: 2 in
Screen Length: 5 ft
Top of Screen: 11.88 ft
Total Depth: 16.88 ft

Initial Depth to Water: 6.05 ft

Pump Type: Peristaltic Tubing Type: PE

Pump Intake From TOC: 11 ft

Estimated Total Volume Pumped:

6375 ml

Flow Cell Volume: 130 ml Final Flow Rate: 425 ml/min Final Draw Down: 6.2 ft Instrument Used: Aqua TROLL 600

Serial Number: 518546

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.2	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.5	
12/18/2019 3:15 PM	00:00	7.36 pH	7.68 °C	1.57 mS/cm	1.80 mg/L	0.49 NTU	-77.7 mV	6.05 ft	425.00 ml/min
12/18/2019 3:18 PM	03:00	7.30 pH	7.52 °C	1.54 mS/cm	0.26 mg/L	1.77 NTU	-104.9 mV	6.05 ft	425.00 ml/min
12/18/2019 3:21 PM	06:00	7.27 pH	7.51 °C	1.44 mS/cm	0.21 mg/L	6.35 NTU	-112.5 mV	6.05 ft	425.00 ml/min
12/18/2019 3:24 PM	09:00	7.25 pH	7.29 °C	1.42 mS/cm	0.19 mg/L	7.73 NTU	-116.4 mV	6.05 ft	425.00 ml/min
12/18/2019 3:27 PM	12:00	7.24 pH	7.31 °C	1.40 mS/cm	0.17 mg/L	9.40 NTU	-119.3 mV	6.05 ft	425.00 ml/min
12/18/2019 3:30 PM	15:00	7.23 pH	7.39 °C	1.37 mS/cm	0.16 mg/L	6.94 NTU	-122.1 mV	6.05 ft	425.00 ml/min

Samples

Sample ID:	Description:

Created using VuSitu from In-Situ, Inc.

GROUNDWATER SAMPLE COLLECTION LOG

		GEN	ERAL I	NFORMA'	TION						
Project Name: Holland BPW -	James DeY	oung PP		Date:	2/18/1	9					
Project #: 73-160017				Field Personnel: Phil Herart, Abbic Welch,							
Site Location: Holland, MI				Well Const.: Sch 40 PVC Keith Furguha							
Well ID: MW-2				Casing Diameter: 2.0"							
Sample ID (if different than We	ll ID):		•		.,	from TOC): 8	8.0'-13.0 (14.0'	-19.0')			
			PURGI	NG DATA							
Time: 6 min Start:	6.00		Finish	16:01							
Purging Volume		Cas		neter (in)		ol. (Gal./Ft.)	3 Casing Vo				
			1			0.04	0.1				
Total Well Depth (ft. from TOC)= 6.1	3	1.5			0.10	0.3	30			
Depth to Water (ft. from TOC) =	3.4	0	2			0.16	0.4	18			
Height of Water in Well (ft.)	=1a.5	13	3			0.36	1.0)8			
One Well Volume (gallons)	= 2.0	4	4			0.63	1.8				
Gallons Purged: 0.6+2						g Device:					
Well Volumes Purged:	29			Purging R	ate (g.p.m.)	0.112	425 my	min)			
Was Well Purged Dry? Yes ~	No~					low rate of 0.13 results in a drav					
		FIELD M	ONITOR	ING PARA							
Time/Elapsed time (minutes)	0:00	3:00	6:00								
Accum. Volume Purged (gal)											
Drawdown (ft)	1	7 01		-							
рН		7.24	7.24					1			
Temperature (C)	6.99	7.11	6.96					-			
Conductivity (mS/cm)	256	257	2.58	3							
ORP (mV)	-67.0	-80-1	-87.5								
Dissolved Oxygen (mg/L)	0.29	0.31	0.19								
Turbidity (NTU)	3.00	2.14	1.44								
Odor											
Appearance and/or Color											
			SAMPLI	NG DATA							
	ish: 16:1)6		Pump Rate	e (g.p.m.):_	0.117 ति	25 ml/mi Snowin	m)			
Sample Collection Depth (ft. from		-		n -	14.0	neh	Curs				
Weather Conditions: Air Tempera	ature (F):	180	Wind	Speed/Dire	ction:	Other:	DUOMIN	9			
Samples Collected On chain of Cu	stody No:	1M-5	_ Analyt	ical Labora	tory: AL	5 Envir	onmenta	y			
Other Notes:											

Low-Flow Test Report:

Test Date / Time: 12/18/2019 4:00:18 PM

Project: 73-160017 (4)

Operator Name: Keith, Phil, Abby

Location Name: MW-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 11.13 ft
Total Depth: 16.13 ft

Initial Depth to Water: 3.4 ft

Pump Type: Peristaltic

Tubing Type: PE

Pump Intake From TOC: 13.63 ft Estimated Total Volume Pumped:

2550 ml

Flow Cell Volume: 130 ml Final Flow Rate: 425 ml/min Final Draw Down: 3.5 ft Instrument Used: Aqua TROLL 600

Serial Number: 518546

Test Notes:

Weather Conditions:

Snowing, 18°F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.2	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.5	
12/18/2019 4:00 PM	00:00	7.25 pH	6.97 °C	2.56 mS/cm	0.29 mg/L	3.00 NTU	-67.0 mV	3.40 ft	425.00 ml/min
12/18/2019 4:03 PM	03:00	7.24 pH	7.11 °C	2.57 mS/cm	0.21 mg/L	2.14 NTU	-80.1 mV	3.40 ft	425.00 ml/min
12/18/2019 4:06 PM	06:00	7.24 pH	6.96 °C	2.58 mS/cm	0.19 mg/L	1.44 NTU	-87.5 mV	3.40 ft	425.00 ml/min

Samples

Sample ID:	Description:	

Created using VuSitu from In-Situ, Inc.

GROUNDWATER SAMPLE COLLECTION LOG

		GEN	ERAL IN	FORMAT	ION					
Project Name: Holland BPW	James DeY	oung PP			18/19					
Project #: 73-160017			Fi	eld Person	nel: Phil	Herou	t, Aldo	e We	<u>lch</u> ,	
Site Location: Holland, MI			w	ell Const.:		Sch 40 PV	c K	eith F	arguhal	
Well ID: MW-3			_ Ca	sing Diam	eter:	2.0"			C	
Sample ID (if different than Wel	1 ID)·		Sc	reened Int	erval (ft fr	om TOC):	10.0'-15	.0- hos (13	3.0'-18.0')	
Sample 13 (if different dans wer	. ID)			op of Casin	•	585.30		10 050 (10	20,0	
			PURGIN		B (16.)	303.30				-
Time: 27 min Start:	34		Finish:	17:01						-
	0.21	Cas	ing Diam		Casing V	ol. (Gal./F	't.) 3 C	asing Vol.	(Gal./Ft.)	
Purging Volume			1			0.04		0.12	2	
Total Well Depth (ft. from TOC)	= 18.2	2	1.5		•	0.10		0.30)	1
Depth to Water (ft. from TOC) =	3.5	2	2		(0.16		0.48	3	
Height of Water in Well (ft.)		O	3		(0.36		1.08	3	
One Well Volume (gallons)	= 2.3	5	4		(0.63		1.89		1
Gallons Purged: 3,D2			Pu	rging and		Device:			7	1
Well Volumes Purged: 1.20			Pu	irging Rate	(g.p.m.)_	0.119	(42	5 ml/	min)	
Was Well Purged Dry? Yes ~	No~					w rate of 0				
		FIELD M		NG PARA		sults in a d	rawdown	01 0.5 11 01	riess	1
Time/Elapsed time (minutes)	0:00	3:00	6:00	9:00	12:00	15:0p	18:00	3000	24:00	27:00
Accum. Volume Purged (gal)	0.00	3.00	0.00	1,00	10- 55	13		U.I. OC		
Drawdown (ft)										
рH	6.72	6.75	6.74	6.74	6.74	675	676	6.76	6.76	6.76
Temperature (C)	9.25	9.39	9.47	9.71	9.95	9.96	9.71	9.95	9.89	9.75
Conductivity (mS/cm)	2.54	2.63	2.67	2.68	2.70	2.69	2.70	2.72	2.71	2.71
ORP (mV)	-40.5	-43.1	-44.9	47.0	-49.0	-51.2	-52.9	-54.2		-56.4
Dissolved Oxygen (mg/L)	0.31	0.24	0.21	0.19			0.14		0.15	0.15
Turbidity (NTU)						83-57			56.48	53-76
Odor	500									
Appearance and/or Color										
	1	8		G DATA				,		
Time: Start: 16:34 Fin	ish: 17:0)l	Pu	ımp Rate (g	g.p.m.):	115 C	425 m	1/mir	1)	1
Sample Collection Depth (ft. from		1.00	77		160	nph	6	owlno		
Weather Conditions: Air Tempera		18°	-	peed/Direc	tion: NW			- 1 r)	
Samples Collected On chain of Cu	stody No:	MM-3	_ Analytic	al Laborat	ory: AU	2 Envi	ronm	ental		
Other Notes:										

Low-Flow Test Report:

Test Date / Time: 12/18/2019 4:32:45 PM

Project: 73-160017 (5)

Operator Name: Keith, Phil, Abby

Location Name: MW-3

Initial Depth to Water: 3.52 ft

Pump Type: Peristaltic

Tubing Type: PE

Pump Intake From TOC: 13.63 ft Estimated Total Volume Pumped:

11475 ml

Flow Cell Volume: 130 ml Final Flow Rate: 425 ml/min Final Draw Down: 3.65 ft Instrument Used: Aqua TROLL 600

Serial Number: 518546

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.2	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.5	
12/18/2019 4:32 PM	00:00	6.72 pH	9.25 °C	2.54 mS/cm	0.31 mg/L	380.51 NTU	-40.5 mV	3.52 ft	425.00 ml/min
12/18/2019 4:35 PM	03:00	6.75 pH	9.39 °C	2.63 mS/cm	0.24 mg/L	204.38 NTU	-43.1 mV	3.52 ft	425.00 ml/min
12/18/2019 4:38 PM	06:00	6.74 pH	9.47 °C	2.67 mS/cm	0.21 mg/L	128.59 NTU	-44.9 mV	3.52 ft	425.00 ml/min
12/18/2019 4:41 PM	09:00	6.74 pH	9.71 °C	2.68 mS/cm	0.19 mg/L	131.17 NTU	-47.0 mV	3.52 ft	425.00 ml/min
12/18/2019 4:44 PM	12:00	6.74 pH	9.95 °C	2.70 mS/cm	0.18 mg/L	107.40 NTU	-49.0 mV	3.52 ft	425.00 ml/min
12/18/2019 4:47 PM	15:00	6.75 pH	9.96 °C	2.69 mS/cm	0.15 mg/L	83.57 NTU	-51.2 mV	3.52 ft	425.00 ml/min
12/18/2019 4:50 PM	18:00	6.76 pH	9.71 °C	2.70 mS/cm	0.14 mg/L	68.79 NTU	-52.9 mV	3.52 ft	425.00 ml/min
12/18/2019 4:53 PM	21:00	6.76 pH	9.95 °C	2.72 mS/cm	0.15 mg/L	62.24 NTU	-54.2 mV	3.52 ft	425.00 ml/min
12/18/2019 4:56 PM	24:00	6.76 pH	9.89 °C	2.71 mS/cm	0.15 mg/L	56.48 NTU	-55.6 mV	3.52 ft	425.00 ml/min
12/18/2019 4:59 PM	27:00	6.76 pH	9.75 °C	2.71 mS/cm	0.15 mg/L	53.78 NTU	-56.4 mV	3.52 ft	425.00 ml/min

Samples

Sample ID:	Description:	